Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a11, author = {A. I. Lopato and P. S. Utkin}, title = {The details of the detonation wave calculation using numerical schemes of different approximation orders}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--79}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/} }
TY - JOUR AU - A. I. Lopato AU - P. S. Utkin TI - The details of the detonation wave calculation using numerical schemes of different approximation orders JO - Matematičeskoe modelirovanie PY - 2015 SP - 75 EP - 79 VL - 27 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/ LA - ru ID - MM_2015_27_7_a11 ER -
%0 Journal Article %A A. I. Lopato %A P. S. Utkin %T The details of the detonation wave calculation using numerical schemes of different approximation orders %J Matematičeskoe modelirovanie %D 2015 %P 75-79 %V 27 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/ %G ru %F MM_2015_27_7_a11
A. I. Lopato; P. S. Utkin. The details of the detonation wave calculation using numerical schemes of different approximation orders. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 75-79. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/
[1] L. I. Sedov, V. P. Korobeinikov, V. V. Markov, “Teoriia rasprostraneniia vzryvnykh voln”, Trudy Matematicheskogo instituta AN SSSR, 175, 1986, 178–214
[2] G. J. Sharpe, S. A. Falle, “Numerical simulations of pulsating detonations: I. Nonlinear stability of steady detonations”, Combustion Theory and Modeling, 4 (2000), 557–574 | Zbl
[3] C. Leung, M. I. Radulescu, G. J. Sharpe, “Characteristics analysis of the one dimensional pulsating dynamics of chain-branching detonations”, Physics of Fluids, 22 (2010), 126101, 15 pp.
[4] L. K. Cole, A. R. Karagozian, J.-L. Cambier, “Stability of flame-shock coupling in detonation waves: 1D dynamics”, Combustion Science and Technology, 184:10–11 (2012), 1502–1525
[5] E. S. Oran, V. N. Gamezo, “Origins of the deflagration-to-detonation transition in gas-phase combustion”, Combustion and Flame, 148 (2007), 4–47
[6] V. Gamezo, T. Ogawa, E. Oran, “Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing”, Combustion and Flame, 155 (2008), 302–315
[7] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997
[8] A. S. Kholodov, “O postroenii raznostnykh skhem s polozhitelnoi approksimatsiei dlia uravnenii giperbolicheskogo tipa”, Zhurnal vychislitelnoi matemat. i matematich. fiziki, 18:6 (1978), 116–132
[9] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | Zbl
[10] Y. Daimon, A. Matsuo, “Detailed features of one-dimensional detonations”, Physics of Fluids, 15:1 (2003), 112–122