The details of the detonation wave calculation using numerical schemes of different approximation orders
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of the work is the mathematical modeling of detonation wave propagation using ENO-schemes with the approximation orders from the first to the fourth. Mathematical description of the detonation wave is based on the Euler equations supplemented with the one-stage chemical kinetics model. For the model hydrogen-air mixture for all numerical approaches concerned the transition from the regular detonation mode to the irregular one with the subsequent detonation combustion breakup is observed.
Keywords: numerical modeling, detonation wave, one-stage chemical kinetics model, ENO-scheme, Runge–Kutta method.
@article{MM_2015_27_7_a11,
     author = {A. I. Lopato and P. S. Utkin},
     title = {The details of the detonation wave calculation using numerical schemes of different approximation orders},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/}
}
TY  - JOUR
AU  - A. I. Lopato
AU  - P. S. Utkin
TI  - The details of the detonation wave calculation using numerical schemes of different approximation orders
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 75
EP  - 79
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/
LA  - ru
ID  - MM_2015_27_7_a11
ER  - 
%0 Journal Article
%A A. I. Lopato
%A P. S. Utkin
%T The details of the detonation wave calculation using numerical schemes of different approximation orders
%J Matematičeskoe modelirovanie
%D 2015
%P 75-79
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/
%G ru
%F MM_2015_27_7_a11
A. I. Lopato; P. S. Utkin. The details of the detonation wave calculation using numerical schemes of different approximation orders. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 75-79. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a11/

[1] L. I. Sedov, V. P. Korobeinikov, V. V. Markov, “Teoriia rasprostraneniia vzryvnykh voln”, Trudy Matematicheskogo instituta AN SSSR, 175, 1986, 178–214

[2] G. J. Sharpe, S. A. Falle, “Numerical simulations of pulsating detonations: I. Nonlinear stability of steady detonations”, Combustion Theory and Modeling, 4 (2000), 557–574 | Zbl

[3] C. Leung, M. I. Radulescu, G. J. Sharpe, “Characteristics analysis of the one dimensional pulsating dynamics of chain-branching detonations”, Physics of Fluids, 22 (2010), 126101, 15 pp.

[4] L. K. Cole, A. R. Karagozian, J.-L. Cambier, “Stability of flame-shock coupling in detonation waves: 1D dynamics”, Combustion Science and Technology, 184:10–11 (2012), 1502–1525

[5] E. S. Oran, V. N. Gamezo, “Origins of the deflagration-to-detonation transition in gas-phase combustion”, Combustion and Flame, 148 (2007), 4–47

[6] V. Gamezo, T. Ogawa, E. Oran, “Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing”, Combustion and Flame, 155 (2008), 302–315

[7] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997

[8] A. S. Kholodov, “O postroenii raznostnykh skhem s polozhitelnoi approksimatsiei dlia uravnenii giperbolicheskogo tipa”, Zhurnal vychislitelnoi matemat. i matematich. fiziki, 18:6 (1978), 116–132

[9] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | Zbl

[10] Y. Daimon, A. Matsuo, “Detailed features of one-dimensional detonations”, Physics of Fluids, 15:1 (2003), 112–122