Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a10, author = {Yu. N. Karamzin and T. A. Kudryashova and V. O. Podryga and S. V. Polyakov}, title = {Multiscale simulation of nonlinear processes in technical microsystems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--74}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/} }
TY - JOUR AU - Yu. N. Karamzin AU - T. A. Kudryashova AU - V. O. Podryga AU - S. V. Polyakov TI - Multiscale simulation of nonlinear processes in technical microsystems JO - Matematičeskoe modelirovanie PY - 2015 SP - 65 EP - 74 VL - 27 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/ LA - ru ID - MM_2015_27_7_a10 ER -
%0 Journal Article %A Yu. N. Karamzin %A T. A. Kudryashova %A V. O. Podryga %A S. V. Polyakov %T Multiscale simulation of nonlinear processes in technical microsystems %J Matematičeskoe modelirovanie %D 2015 %P 65-74 %V 27 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/ %G ru %F MM_2015_27_7_a10
Yu. N. Karamzin; T. A. Kudryashova; V. O. Podryga; S. V. Polyakov. Multiscale simulation of nonlinear processes in technical microsystems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 65-74. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/
[1] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.
[2] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.
[3] Yau Wu, C. H. Lee, “Kinetic Theory of Shock Tube Problems for Binary Mixtures”, The Physics of Fluent, 14:2 (1971), 313–322
[4] V. Garzo, A. Santos, J. J. Brey, “A kinetic model for a multicomponent gas”, J. Phys. Fluids A, 1:2 (1989), 380–383 | Zbl
[5] A. Ramos, G. Tejeda, J. M. Fernandez, S. Montero, “Nonequilibrium Processes in Supersonic Jets of N2, H2, and N2+H2 Mixtures: (I) Zone of Silence”, J. Phys. Chem. A, 113 (2009), 8506–8512
[6] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular theory of gases and liquids, John Wiley and Sons Inc., New-York chapman and hall, lim., London, 1954, 1249 pp. | Zbl
[7] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Oxford Science simulations, 1994
[8] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.
[9] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, New-York, 2002, 638 pp.
[10] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103
[11] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43:5 (1931), 461–482
[12] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29:12 (1984), 6443–6453
[13] V. Mirnyi, M. Frener, “Ob odnoi programme modelirovaniya molekulyarnoi dinamiki gaza s elementami rasparallelivaniya algoritma”, Vychislitelnye tekhnologii, 6:3 (2001), 32–50
[14] V. L. Kovalev, V. Yu. Sazonova, A. N. Yakunchikov, “Modelirovanie vzaimodeistviya strui razrezhennogo gaza s pregradoi metodami molekulyarnoi dinamiki”, Vestn. Mosk. Un-ta., Matem. Mekhan., 2008, no. 2, 56–58
[15] V. L. Kovalev, A. N. Yakunchikov, “Issledovanie techeniya i teploobmena v mikro- i nanokanalakh metodami molekulyarnoi dinamiki”, Vestn. Mosk. Un-ta., Matem. Mekhan., 2008, no. 5, 67–70
[16] T. G. Elizarova, Quasi-gasdynamic equations, Springer, NY, 2009, 286 pp.
[17] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “O kvazigazo- i kvazigidrodinami-cheskikh uravneniyakh binarnykh smesei gazov”, Doklady akademii nauk, 459:4 (2014), 395–399 | Zbl
[18] T. A. Kudryashova, V. O. Podryga, S. V. Polyakov, “Modelirovanie techenii gasovykh smesei v mikrokanalakh”, Vestnik RUDN, seriya “Matematika. Informatika. Fizika”, 2014, no. 3, 154–163
[19] Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Superkompyuternoye modelirovanie nelineinykh processov v technicheskikh mikrosistemakh”, Setocnye metody dlya kraevykh zadach i prilozheniya, Kazanskii universitet, Kazan, 2014, 367–374
[20] V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, “Superkompyuternoye molekulyarnoe modelirovanie termodinamicheskogo ravnovesiya v mikrosystemakh gas-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138
[21] J. Dongarra, I. Foster, J. Fox, W. Gropp, K. Kennedy, L. Torczon, A. White, Sourcebook of Parallel Computing, Morgan Kauffman, 2003, 852 pp.
[22] S. V. Polyakov, Yu. N. Karamzin, O. A. Kosolapov, T. A. Kudriashova, S. A. Sukov, “Gibridnaia superkompiuternaia platforma i razrabotka prilozhenii dlia resheniia zadach mekhaniki sploshnoi sredy setochnymi metodami”, Izvestiia IUFU. Tekhnicheskie nauki, 2012, no. 6(131), 105–115