Multiscale simulation of nonlinear processes in technical microsystems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is analysis of multiscale numerical approach to modeling of nonlinear processes in micron size technical systems As an example the calculation of a microflow in installation of a supersonic cold gas sputtering (SCGS) is considered. This problem is modern for many areas in nanotechnologies. The presented approach combines calculations of gasdynamic processes at the macrolevel by the gas dynamics equations and molecular modeling at micro- and nanolevels. Splitting on physical processes and scales, grid methods and molecular dynamics methods are the cornerstone of approach. The main results of the work are calculated parameters of binary gas mixture supersonic flow in the SCGS installation. They confirm both the efficiency of the developed approach and the possibility of its use to optimize the parameters of technical microsystems like this.
Keywords: gas and molecular dynamics, multiscale modeling, parallel computations, supersonic cold gasdynamic sputtering.
@article{MM_2015_27_7_a10,
     author = {Yu. N. Karamzin and T. A. Kudryashova and V. O. Podryga and S. V. Polyakov},
     title = {Multiscale simulation of nonlinear processes in technical microsystems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/}
}
TY  - JOUR
AU  - Yu. N. Karamzin
AU  - T. A. Kudryashova
AU  - V. O. Podryga
AU  - S. V. Polyakov
TI  - Multiscale simulation of nonlinear processes in technical microsystems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 74
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/
LA  - ru
ID  - MM_2015_27_7_a10
ER  - 
%0 Journal Article
%A Yu. N. Karamzin
%A T. A. Kudryashova
%A V. O. Podryga
%A S. V. Polyakov
%T Multiscale simulation of nonlinear processes in technical microsystems
%J Matematičeskoe modelirovanie
%D 2015
%P 65-74
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/
%G ru
%F MM_2015_27_7_a10
Yu. N. Karamzin; T. A. Kudryashova; V. O. Podryga; S. V. Polyakov. Multiscale simulation of nonlinear processes in technical microsystems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 65-74. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a10/

[1] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.

[2] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.

[3] Yau Wu, C. H. Lee, “Kinetic Theory of Shock Tube Problems for Binary Mixtures”, The Physics of Fluent, 14:2 (1971), 313–322

[4] V. Garzo, A. Santos, J. J. Brey, “A kinetic model for a multicomponent gas”, J. Phys. Fluids A, 1:2 (1989), 380–383 | Zbl

[5] A. Ramos, G. Tejeda, J. M. Fernandez, S. Montero, “Nonequilibrium Processes in Supersonic Jets of N2, H2, and N2+H2 Mixtures: (I) Zone of Silence”, J. Phys. Chem. A, 113 (2009), 8506–8512

[6] J. O. Hirschfelder, Ch. F. Curtiss, R. B. Bird, Molecular theory of gases and liquids, John Wiley and Sons Inc., New-York chapman and hall, lim., London, 1954, 1249 pp. | Zbl

[7] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Oxford Science simulations, 1994

[8] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.

[9] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, New-York, 2002, 638 pp.

[10] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103

[11] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43:5 (1931), 461–482

[12] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29:12 (1984), 6443–6453

[13] V. Mirnyi, M. Frener, “Ob odnoi programme modelirovaniya molekulyarnoi dinamiki gaza s elementami rasparallelivaniya algoritma”, Vychislitelnye tekhnologii, 6:3 (2001), 32–50

[14] V. L. Kovalev, V. Yu. Sazonova, A. N. Yakunchikov, “Modelirovanie vzaimodeistviya strui razrezhennogo gaza s pregradoi metodami molekulyarnoi dinamiki”, Vestn. Mosk. Un-ta., Matem. Mekhan., 2008, no. 2, 56–58

[15] V. L. Kovalev, A. N. Yakunchikov, “Issledovanie techeniya i teploobmena v mikro- i nanokanalakh metodami molekulyarnoi dinamiki”, Vestn. Mosk. Un-ta., Matem. Mekhan., 2008, no. 5, 67–70

[16] T. G. Elizarova, Quasi-gasdynamic equations, Springer, NY, 2009, 286 pp.

[17] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “O kvazigazo- i kvazigidrodinami-cheskikh uravneniyakh binarnykh smesei gazov”, Doklady akademii nauk, 459:4 (2014), 395–399 | Zbl

[18] T. A. Kudryashova, V. O. Podryga, S. V. Polyakov, “Modelirovanie techenii gasovykh smesei v mikrokanalakh”, Vestnik RUDN, seriya “Matematika. Informatika. Fizika”, 2014, no. 3, 154–163

[19] Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Superkompyuternoye modelirovanie nelineinykh processov v technicheskikh mikrosistemakh”, Setocnye metody dlya kraevykh zadach i prilozheniya, Kazanskii universitet, Kazan, 2014, 367–374

[20] V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, “Superkompyuternoye molekulyarnoe modelirovanie termodinamicheskogo ravnovesiya v mikrosystemakh gas-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138

[21] J. Dongarra, I. Foster, J. Fox, W. Gropp, K. Kennedy, L. Torczon, A. White, Sourcebook of Parallel Computing, Morgan Kauffman, 2003, 852 pp.

[22] S. V. Polyakov, Yu. N. Karamzin, O. A. Kosolapov, T. A. Kudriashova, S. A. Sukov, “Gibridnaia superkompiuternaia platforma i razrabotka prilozhenii dlia resheniia zadach mekhaniki sploshnoi sredy setochnymi metodami”, Izvestiia IUFU. Tekhnicheskie nauki, 2012, no. 6(131), 105–115