Solving Stokes equation in three-dimensional geometry using finite-difference method
Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 67-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent outstanding developments in three-dimensional structure investigation methods for porous and composite materials (e.g., microtomography, confocal microscopy, FIB-SEM) and improvements in computing resources made the simulation of various physical processes directly in three-dimensional geometry of such materials (pore-scale modeling) possible. These simulations can assess the effective properties of the material under study or improve our understanding of the governing physical processes in more detail. In this contribution we solve Stokes equation using the computational schemes of second and fourth accuracy order directly in the three-dimensional domain, which has the same geometry as microstructure of the investigated sample (obtained using X-ray microtomography scanning). Computed permeability value for the sandstone sample was found to be in a good agreement with laboratory measurements.
Keywords: porous media, permeability, X-ray microtomography, effective properties, pore-scale modeling.
@article{MM_2015_27_6_a4,
     author = {R. V. Vasilyev and K. M. Gerke and M. V. Karsanina and D. V. Korost},
     title = {Solving {Stokes} equation in three-dimensional geometry using finite-difference method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_6_a4/}
}
TY  - JOUR
AU  - R. V. Vasilyev
AU  - K. M. Gerke
AU  - M. V. Karsanina
AU  - D. V. Korost
TI  - Solving Stokes equation in three-dimensional geometry using finite-difference method
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 67
EP  - 80
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_6_a4/
LA  - ru
ID  - MM_2015_27_6_a4
ER  - 
%0 Journal Article
%A R. V. Vasilyev
%A K. M. Gerke
%A M. V. Karsanina
%A D. V. Korost
%T Solving Stokes equation in three-dimensional geometry using finite-difference method
%J Matematičeskoe modelirovanie
%D 2015
%P 67-80
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_6_a4/
%G ru
%F MM_2015_27_6_a4
R. V. Vasilyev; K. M. Gerke; M. V. Karsanina; D. V. Korost. Solving Stokes equation in three-dimensional geometry using finite-difference method. Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 67-80. http://geodesic.mathdoc.fr/item/MM_2015_27_6_a4/

[1] M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, “Pore-scale imaging and modeling”, Advances in Water Resources, 51 (2013), 197–216

[2] K. M. Gerke, D. V. Korost, R. V. Vasilev, M. V. Karsanina, V. P. Tarasovskii, “Izuchenie stroeniia i opredelenie effektivnykh svoistv materialov na osnove dannykh ob ikh stroenii, poluchennikh metodom rentgenovskoi mikrotomografii (na primere poristoi pronitsamoi keramiki)”, Neorganicheskie materialy, 2014

[3] P. G. Bedrikovetsky, Mathematical Theory of Oil Gas Recovery (With applications to ex-USSR oil gas condensate fields), Kluwer Academic Publishers, London–Boston–Dordrecht, 1993, 600 pp.

[4] F. Khan, F. Enzmann, M. Kersten, A. Wiegmann, K. Steiner, “3D simulation of permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBM solver”, Journal of Soils and Sediments, 2011 | DOI

[5] M. V. Karsanina, K. M. Gerke, R. V. Vasilev, D. V. Korost, “Modelirovanie struktury materialov, obladaiushchikh zhenaemymi svoistvami, s pomoshchiu korreliatsionnykh funktsii”, Mat. Modelirovaniye, 27:4 (2015), 50–63

[6] S. Khirevich, A. Daneyko, A. Holtzel, A. Seidel-Morgenstern, U. Tallarek, “Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion”, Journal of Chromatography A, 1217 (2010), 4713–4722

[7] B. Bijeljic, A. Raeni, P. Mostaghimi, M. J. Blunt, “Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images”, Physical Review E, 87 (2013), 013011

[8] D. V. Korost, G. A. Kalmykov, V. O. Iapaskurt, M. K. Ivanov, “Primenenie kompiuternoi mikrotomografii dlia izucheniia stroeniia terrigennykh kollektorov”, Geologiia nefti i gaza, 2010, no. 2, 36–42 | MR

[9] D. V. Korost, K. M. Gerke, “Computation of Reservoir Properties Based on 3D-Structure of Porous Media”, SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition (16–18 October 2012, Moscow, Russia), SPE Technical Paper 162023-MS | DOI

[10] K. M. Gerke, E. B. Skvortsova, D. V. Korost, “Tomographic method of studying soil pore space: Current perspectives and results for some Russian soils”, Eurasian Soil Science, 45:7 (2012), 781–791

[11] M. A. Al Ibrahim, N. F. Hurley, W. Zhao, D. Acero-Allard, “An automatic petrographic image analysis system: capillary pressure curves using confocal microscopy”, SPE Annual Technical Conference and Exibition (San Antonio, Texas, 8–10 October 2012), Society of Petroleum Engineers Technical paper, SPE 159180

[12] J. Joos, Th. Carraro, A. Weber, E. Ivers-Tiffee, “Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling”, Journal of Power Sources, 196 (2011), 7302–7307

[13] C. L. Y. Yeong, S. Torquato, “Reconstructing random media. II: Three-dimensional media from two-dimensional cuts”, Phys. Rev. E, 58 (1998), 224–233 | MR

[14] K. M. Gerke, M. V. Karsanina, R. V. Vasilyev, D. Mallants, “Improving pattern reconstruction using directional correlation functions”, Europhysics Letters, 106:6 (2014), 66002

[15] E. J. Garboczi, D. P. Bentz, “Multi-scale analytical/numerical theory of the diffusivity of concrete”, J. Adv. Cement-Based. Mater., 8 (1998), 77–88

[16] C. Manwart, U. Aaltosalmi, A. Koponen, R. Hilfer, J. Timonen, “Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media”, Phys. Rev. E, 66 (2002), 016702

[17] X. Garcia, L. T. Akanji, M. J. Blunt, S. K. Matthai, J. P. Latham, “Numerical study of the effects of particle shape and polydispersity on permeability”, Phys. Rev. E, 80 (2009), 021304

[18] L. Talon, D. Bauer, N. Gland, S. Youssef, H. Auradou, I. Ginzburg, “Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media”, Water Resources Research, 48 (2012), W04526

[19] P. E. Øren, S. Bakke, O. J. Arntzen, “Extending predictive capabilities to network models”, SPE Journal, 3 (1998), 324–336

[20] A. S. Al-Kharusi, M. J. Blunt, “Multiphase flow predictions from carbonate pore space images using extracted network models”, Water Res. Res., 44 (2008), W06S01

[21] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, in 10 volumes, v. 6, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 1987, 539 pp. | MR

[22] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland publishing company, Amsterdam–New York–Oxford, 1977, 500 pp. | MR | Zbl

[23] S. V. Patankar, Numerical heat transfer fluid flow, Hemisphere Publication, Washington, 1980, 197 pp. | Zbl

[24] K. M. Gerke, R. V. Vasilyev, D. V. Korost, M. V. Karsanina, N. Balushkina, R. Khamidullin, G. A. Kalmykov, D. Mallants, “Determining Physical Properties of Unconventional Reservoir Rocks: from Laboratory Methods to Pore-Scale Modeling”, SPE Unconventional Resources Conference and Exhibition (11–13 November 2013, Brisbane, Australia), SPE 167058 Technical paper