On calculation of platelet clot growth based on “advection-diffusion” equations
Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 54-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method solving equations of a model for platelet transport in blood plasma flow and platelet clot formation is modified. Full matrix for shear-induced diffusion of platelets is used. A comparison of blood clot’s shapes corresponding to various lengths of vessel wall damage is given.
Keywords: shear-induced diffusion, platelets, blood clot
Mots-clés : viscous fluid, “advection-diffusion”.
@article{MM_2015_27_6_a3,
     author = {E. A. Pogorelova and A. I. Lobanov},
     title = {On calculation of platelet clot growth based on {\textquotedblleft}advection-diffusion{\textquotedblright} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {54--66},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_6_a3/}
}
TY  - JOUR
AU  - E. A. Pogorelova
AU  - A. I. Lobanov
TI  - On calculation of platelet clot growth based on “advection-diffusion” equations
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 54
EP  - 66
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_6_a3/
LA  - ru
ID  - MM_2015_27_6_a3
ER  - 
%0 Journal Article
%A E. A. Pogorelova
%A A. I. Lobanov
%T On calculation of platelet clot growth based on “advection-diffusion” equations
%J Matematičeskoe modelirovanie
%D 2015
%P 54-66
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_6_a3/
%G ru
%F MM_2015_27_6_a3
E. A. Pogorelova; A. I. Lobanov. On calculation of platelet clot growth based on “advection-diffusion” equations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 54-66. http://geodesic.mathdoc.fr/item/MM_2015_27_6_a3/

[1] M. A. Panteleev, S. A. Vasilev, E. I. Sinauridze i dr., Prakticheskaya koagulologiya, ed. A. I. Vorob'ev, Prakticheskaya meditsina, M., 2011, 192 pp.

[2] Yu. I. Afanasev, N. A. Yurina, E. F. Kotofskii, Gistologiya, tsitologiya i embriologiya, eds. Yu. I. Afanasev, A. N. Yurina, Meditsina, M., 2002, 744 pp.

[3] A. L. Fogelson, R. D. Guy, “Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution”, Mathematical medicine and biology, 21:4 (2004), 293–334 | Zbl

[4] A. L. Fogelson, R. D. Guy, “Immersed-boundary-type models of intravascular platelet aggregation”, Computer methods in applied mechanics and engineering, 197:25–28 (2008), 2087–2104 | MR | Zbl

[5] V. Breedveld, D. van den Ende, M. Bosscher et al., “Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions”, The journal of chemical physics, 116:23 (2002), 10529–10535

[6] V. N. Buravtsev, A. I. Lobanov, A. V. Ukrainets, “Mathematical model of platelet thrombus growth”, Mathematical Models and Computer Simulations, 2:1 (2010), 55–62 | Zbl

[7] D. R. Foss, J. F. Brady, “Self-diffusion in sheared suspensions by dynamic simulation”, Journal of fluid mechanics, 401 (1999), 243–274 | Zbl

[8] A. Sierou, J. F. Brady, “Shear-induced self-diffusion in non-colloidal suspensions”, Journal of fluid mechanics, 506 (2004), 285–314 | Zbl

[9] V. Breedveld, Shear-induced self-diffusion in concentrated suspensions, Thesis, University of Twente, Enschede, 2000, 148 pp.

[10] E. A. Pogorelova, A. I. Lobanov, “Matematicheskaya model rosta trombotsitarnogo tromba so sdvig-vyzvannoy diffuziei trombotsitov”, Vestnik TOGU, 2014, no. 1(32), 45–54 | MR

[11] A. L. Kuharsky, A. L. Fogelson, “Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition”, Biophysical journal, 80:3 (2001), 1050–1074

[12] E. S. Oran, J. P. Boris, Numerical simulation of reactive flow, 2nd ed., Cambridge University Press, 2005, 530 pp. | Zbl

[13] T. K. Korshiya, V. F. Tishkin, A. P. Favorskii et al., “A variational approach to the construction of difference schemes on curvilinear meshes for the heat-conduction equation”, USSR Computational Mathematics and Mathematical Physics, 20:2 (1980), 135–155 | MR | Zbl

[14] V. A. Garanzha, “Barrier method for quasi-isometric grid generation”, Computational mathematics and mathematical physics, 40:11 (2000), 1617–1637 | MR | Zbl

[15] O. A. Ladyzhenskaia, The Mathematical Theory of Viscous Incompressible Flow, Martino Fine Books, 2014, 198 pp.

[16] V. N. Koterov, A. S. Kocherova, V. M. Krivtsov, “A technique for computing incompressible flows”, Computational mathematics and mathematical physics, 42:4 (2002), 526–533 | MR | Zbl

[17] V. I. Lebedev, “O metode setok dlya odnoy sistemy uravneniy v chastnykh proizvodnykh”, Izvestiya akademii nauk SSSR. Seriya matematicheskaya, 22:5 (1958), 717–734 | MR | Zbl

[18] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko i dr., Raznostnye skhemy na neregulyarnykh setkakh, Kriteriy, Minsk, 1996, 274 pp.

[19] K. Horsfield, M. J. Woldenberg, “Diameters and cross-sectional areas of branches in the human pulmonary arterial tree”, The anatomical record, 223:3 (1989), 245–251