Quantum simulation of structure switching in molecular system
Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents the results of ab initio quantum simulation of graphite-like structure formation from amorphous carbon. Our work is devoted to explanation of resistance switching mechanism in experiments on phase-change memory. Here, we use two-scale molecular dynamics model, which consists of Car–Parrinello quantum molecular dynamics (CPMD) and modified Ehrenfest molecular dynamics. The results of simulation point the appearance of layered graphite-like molecular structure under temperature increase. These changes can be considered as a phase transition of second kind in nanostructured material, which leads to threshold resistance switching. For calculations, we used the IBM BlueGene/P supercomputer installed at the Faculty of Computational Mathematics and Cybernetics of the Moscow State University.
Keywords: multiscale quantum molecular dynamics codes, phase change memory, nanotechnology, supercomputer IBM BlueGene/P.
Mots-clés : phase transition in amorphous carbon
@article{MM_2015_27_6_a0,
     author = {A. M. Popov and N. G. Nikishin and G. N. Shumkin},
     title = {Quantum simulation of structure switching in molecular system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_6_a0/}
}
TY  - JOUR
AU  - A. M. Popov
AU  - N. G. Nikishin
AU  - G. N. Shumkin
TI  - Quantum simulation of structure switching in molecular system
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 13
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_6_a0/
LA  - ru
ID  - MM_2015_27_6_a0
ER  - 
%0 Journal Article
%A A. M. Popov
%A N. G. Nikishin
%A G. N. Shumkin
%T Quantum simulation of structure switching in molecular system
%J Matematičeskoe modelirovanie
%D 2015
%P 3-13
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_6_a0/
%G ru
%F MM_2015_27_6_a0
A. M. Popov; N. G. Nikishin; G. N. Shumkin. Quantum simulation of structure switching in molecular system. Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 3-13. http://geodesic.mathdoc.fr/item/MM_2015_27_6_a0/

[1] B. Standley, W. Bao, H. Zhang et al., “Graphene-based atomic-scale switches”, Nano Lett., 8 (2008), 3345–3349

[2] G. Meijer, Who wins the nonvolatile memory race?, Science, 319:5870 (2008), 1625–1626

[3] A. Sebastian, A. Pauza, C. Rossel, R. M. Shelby, A. F. Rodriguez, H. Pozidis, E. Eleftheriou, “Resistance switching at the nanometre scale in amorphous carbon”, New Journal of Physics, 13:1 (2011), 013020

[4] G. N. Shumkin, A. M. Popov, A. Curioni, T. Laino, “A multiscale modeling of naphthalocyanine-based molecular switch”, Procedia Computer Science, 1:1 (2010), 185–192

[5] G. N. Shumkin, F. Zipoli, A. M. Popov, A. Curioni, “Multiscale quantum simulation of resistance switching in amorphous carbon”, Procedia Computer Science, 9 (2012), 641–650

[6] K. Takai, M. Oga, H. Sato et al., “Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects”, Phys. Rev. B, 67 (2003), 214202

[7] Y. He, J. Zhang, X. Guan et al., “Molecular Dynamics Study of the Switching Mechanism of Carbon-Based Resistive Memory”, IEEE Transactions on Electron Devices, 57:12 (2010), 3434–3441

[8] , The CPMD consortium, 2010 http://www.cpmd.org

[9] R. Car, M. Parrinello, “Unified approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett., 55 (1985), 2471–2474

[10] W. Kohn, “Density Functional and Density Matrix Method Sacaling Linearly with the Number of Atoms”, Phys. Rev. Lett., 76 (1996), 3168–3171

[11] X. Andrade, A. Castro, D. Zueco, J. L. Alonso, P. Echenique, F. Falceto, A. Rubio, “A modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics”, J. Chem. Theory Comput., 5:4 (2009), 728–742 | MR

[12] P. R. Wallace, “The Band Theory of Graphite”, Phys. Rev., 71:9 (1947), 622–634 | Zbl