Numerical models of the penetration of a turbulent layer in stably stratified fluid
Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 52-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The improved numerical models based on the algebraic representations of the Reynolds stresses and fluxes and the use of the differential equation for the transfer of the dispersion of fluctuations of the vertical velocity component are constructed for describing the processes of a vertical turbulent exchange in a stably stratified reservoir. A numerical model of vertical turbulent exchange under the conditions of simultaneous thermal and salinity stratification is constructed. Weinstock modification of the relaxation time scale of scalar field is considered for the case of stratification caused by salinity variation only. Numerical modeling of the penetration of a turbulent layer of a mixed fluid in a linearly stratified medium under the action of constant shear stress is carried out. Computational results agree well with known experimental data.
Keywords: mathematical modelling, turbulent exchange anisotropy.
Mots-clés : turbulence
@article{MM_2015_27_5_a3,
     author = {O. F. Vasiliev and T. E. Ovchinnikova and G. G. Chernykh},
     title = {Numerical models of the penetration of a turbulent layer in stably stratified fluid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a3/}
}
TY  - JOUR
AU  - O. F. Vasiliev
AU  - T. E. Ovchinnikova
AU  - G. G. Chernykh
TI  - Numerical models of the penetration of a turbulent layer in stably stratified fluid
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 52
EP  - 64
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_5_a3/
LA  - ru
ID  - MM_2015_27_5_a3
ER  - 
%0 Journal Article
%A O. F. Vasiliev
%A T. E. Ovchinnikova
%A G. G. Chernykh
%T Numerical models of the penetration of a turbulent layer in stably stratified fluid
%J Matematičeskoe modelirovanie
%D 2015
%P 52-64
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_5_a3/
%G ru
%F MM_2015_27_5_a3
O. F. Vasiliev; T. E. Ovchinnikova; G. G. Chernykh. Numerical models of the penetration of a turbulent layer in stably stratified fluid. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 52-64. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a3/

[1] A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, v. 1, Mechanics of Turbulence, MIT Press, Cambridge, Mass., 1971

[2] V. P. Kochergin, E. A. Tsvetova, V. A. Sukhorukov, “Modelirovanie protsessov vertikalnoi turbulentnoi diffuzii v okeane”, Chislennye metody rascheta okeanicheskikh techenii, VTS SOAN SSSR, Novosibirsk, 1974, 129–152 | Zbl

[3] G. I. Marchuk, V. P. Kochergin, V. I. Klimok, V. A. Sukhorukov, “On the dynamics of the ocean surface mixed layer”, J. Phys. Oceanography, 7 (1977), 865–875

[4] S. S. Zilitinkevich, Yu. D. Resnianskii, D. V. Chalikov, “Teoreticheskoe modelirovanie verkhnego sloia okeana”, Mechanika zhidkosti i gaza, 12, VINITI, M., 1978, 5–51 | MR

[5] W. Rodi, Turbulence models and their application in hydraulics. A state of the art review, University of Karlsruhe, 1980, 104 pp.

[6] O. M. Phillips, The dynamics of the upper ocean, Cambridge University Press, Cambridge, England, 1969

[7] W. S. Lewellen, “Use of invariant modelling”, Handbook of turbulence, v. 1, Fundamentals and applications, eds. W. Frost, T. H. Moulden, Plenium Press, New York–London, 1977

[8] A. S. Monin, R. V. Ozmidov, Okeanskaia turbulentnost, Gidrometyeoizdat, L., 1981, 320 pp.

[9] G. L. Mellor, T. Yamada, “Development of a turbulence closure model for geophysical fluid problems”, Reviews of Geophysics and Space Physics, 20:4 (1982), 851–875

[10] P. S. Lineikin, V. S. Maderich, Teoria okeanicheskogo termoklina, Gidrometeoizdat, L., 1982, 271 pp.

[11] W. Rodi, “Turbulence models for environmental problems”, Prediction Methods for Turbulent Flows, ed. W. Kollmann, Hemisphere Publ. Corp., Washington, D.C., 1980, 259–349

[12] V. Yu. Lyapidevskii, “Model of the penetration of an upper uniform layer into a stratified fluid”, J. Appl. Mech. Techn. Phys., 27:2 (1986), 196–201

[13] W. Rodi, “Examples of calculation methods for flow and mixing in stratified fluids”, J. of Geophys. Res., 92:5 (1987), 5305–5328

[14] J. Weinstock, “A theory of turbulence transport”, J. Fluid Mechanics, 202 (1989), 319–338 | MR | Zbl

[15] V. A. Sukhorukov, N. V. Dmitriev, “Theory of the turbulent drift friction layer of the Ocean”, J. Phys. Oceanography, 20:8 (1990), 1137–1149

[16] O. A. Druzhinin, V. I. Kazakov, P. A. Matusov, L. A. Ostrovsky, “The evolution of a thermocline effect by a turbulent stream”, Nonlinear Processes in Geophysics, 2:1 (1995), 49–57 | MR

[17] K. Hanjalic, R. Musemic, “Modeling the dynamics of double-diffusive scalar fields at various stability conditions”, Int. J. Heat and Fluid Flow, 18:4 (1997), 360–367

[18] B. B. Ilyushin, A. F. Kurbatskii, “New models for calculating third-order moments in the planetary boundary layer”, Izvestiya. Atmospheric and Oceanic Physics, 34:6 (1998), 692–700 | MR | MR | Zbl

[19] A. T. Zinoviev, S. N. Yakovenko, “Modeling of vertical turbulent exchange in a stratified near-wall flow”, J. Appl. Mech. Techn. Phys., 39:6 (1998), 868–874 | Zbl

[20] A. F. Kurbatskii, Vvedenie v modelirovanie turbulentnogo perenosa impulsa i skaliara, Geo, Novosibirsk, 2007, 331 pp.

[21] L. Kantha, “Modeling turbulent mixing in the global ocean: second moment closure models”, Turbulence: Theory, Types and Simulation, Chapter 1, Nova Sci. Publishers, Inc., 2010, 1–68

[22] O. F. Vasiliev, O. F. Voropaeva, A. F. Kurbatskii, “Turbulent mixing in stably stratified flows of the environment: The current state of the problem (Review)”, Izvestiya, Atmospheric and Oceanic Physics, 47:3 (2011), 265–280 | MR | MR

[23] O. F. Vasiliev, T. E. Ovchinnikova, G. G. Chernykh, “Mathematical modeling of turbulent layer penetration in a stratified fluid”, Doklady Physics, 57:4 (2012), 166–170

[24] O. F. Vasiliev, T. E. Ovchinnikova, G. G. Chernykh, “On the numerical modelling of the turbulent layer penetration into a stably stratified fluid”, Thermophysics and Aeromechanics, 20:2 (2013), 139–149 | MR | MR | Zbl

[25] H. Kato, O. M. Phillips, “On the penetration of a turbulent layer into stratified fluid”, J. Fluid Mech., 37:4 (1969), 643–655

[26] O. B. Bocharov, O. F. Vasiliev, T. E. Ovchinnikova, “Approximate equation of state of water in the vicinity of the maximum-density temperature with allowance for mineralization”, Izv. Acad. Nauk, Atmospheric and Oceanic Physics, 40:3 (2004), 374–376 | MR

[27] C. T. Chen, F. J. Millero, “Precise thermodynamic properties for natural waters covering only the limnologies range”, Limnol. Oceanogr., 31:3 (1986), 657–662

[28] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Pergamon Press, London, 1963, 765 pp. | MR