Hybrid paralleling of the algorithms of radiation cascade transport modelling
Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 39-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Statistical algorithms of modeling of radiation cascade transport in compound objects by use of heterogeneous computers are developed. Generation of electron fluxes by X-radiation, bremsstrahlung and radiative electron emission are considered. Economy scheme of counting the particle generations is implemented. An approach of hybrid paralleling of the calculations for effective application of CPU and GPU is worked out. The approach is based on modification of particle trajectories tree handling method. The applications of the developed simulation tool are presented in terms of results obtained with use of hybrid computer K-100 and compared to MCNP.
Mots-clés : radiation transport
Keywords: cascade process, heterogeneous supercomputer, hybrid paralleling.
@article{MM_2015_27_5_a2,
     author = {M. E. Zhukovskiy and R. V. Uskov},
     title = {Hybrid paralleling of the algorithms of radiation cascade transport modelling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a2/}
}
TY  - JOUR
AU  - M. E. Zhukovskiy
AU  - R. V. Uskov
TI  - Hybrid paralleling of the algorithms of radiation cascade transport modelling
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 39
EP  - 51
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_5_a2/
LA  - ru
ID  - MM_2015_27_5_a2
ER  - 
%0 Journal Article
%A M. E. Zhukovskiy
%A R. V. Uskov
%T Hybrid paralleling of the algorithms of radiation cascade transport modelling
%J Matematičeskoe modelirovanie
%D 2015
%P 39-51
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_5_a2/
%G ru
%F MM_2015_27_5_a2
M. E. Zhukovskiy; R. V. Uskov. Hybrid paralleling of the algorithms of radiation cascade transport modelling. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 39-51. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a2/

[1] M. E. Zhukovskiy, S. V. Podoliako, R. V. Uskov, “Model of Individual Collisions for Description of Electron Transport in Matter”, Mathematical Models and Computer Simulations, 4:1 (2012), 101–109 | MR

[2] M. E. Zhukovskii, R. V. Uskov, “Modelirovanie vzaimodeistviia gamma-izlucheniia s veshchestvom na gibridnykh vychislitelnykh sistemakh”, Matematich. modelir., 23:7 (2011), 20–32

[3] M. E. Zhukovskii, R. V. Uskov, “Matematicheskoe modelirovanie radiatsionnoi emissii elektronov na gibridnykh superkompiuterakh”, Vychislitelnye metody i programmirovanie, 13:1 (2012), 189–197

[4] A. M. Kolchuzhkin, V. V. Uchaikin, Vvedenie v teoriiu prokhozhdeniia chastits cherez veshchestvo, Atomizdat, M., 1978 | MR

[5] S. M. Seltzer, “An Overview of ETRAN Monte Carlo Methods”, Monte Carlo Transport of Electrons and Photons, eds. T. M. Jenkins, W. R. Nelson, A. Rindi, Plenum Press, New York, 1988, 153

[6] J. A. Halbleib, R. P. Kensek, T. A. Mehlhom, G. D. Valdez, S. M. Seltzer, M. J. Berger, ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes, Report SAND91-1634, Sandia National Laboratories, Albuquerque, NM, 1992

[7] W. R. Nelson, N. Hirayama, D. W. O. Rogers, The EGS4 Code System, Report SLAC-265, Stanford Linear Accelerator Center, Stanford, CA, 1985

[8] Geant4 User's Guide for Application Developers. Geant4 Collaboration, Version: geant4 10.0.6, , December 2013 http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html

[9] S. Goudsmit, J. L. Saunderson, “Multiple scattering of electrons”, Phys. Rev., 57 (1940), 24–29 | Zbl

[10] L. D. Landau, “O poteriakh energii bystrymi chastitsami na ionizatsiiu”, Sobr. trudov, v. 1, Nauka, M., 1969

[11] O. Blunck, S. Leisegang, “Zum Energieverlust schneller Elektronen in duennen Schichten”, Z. Physik, 128 (1950), 500–505

[12] D. E. Cullen, J. H. Hubbell, L. D. Kissel, EPDL97: the Evaluated Photon Data Library, '97 Version, UCRL-50400, 6, Rev. 5, Lawrence Livermore National Laboratory, 1997

[13] “PENELOPE — A Code System for Monte Carlo Simulation of Electron and Photon Transport”, Workshop Proceedings (Issy-les-Moulineaux, France, 5–7 November 2001)

[14] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[15] M. E. Zhukovskii, V. P. Zagonov, S. V. Podoliako, M. V. Skachkov, G.-R. Tillak, K. Bellon, “Primenenie poverkhnostno orientirovannogo opisaniia obieektov dlia modelirovaniia transformatsii rentgenovskogo izlucheniia v zadachakh vychislitelnoi diagnostiki”, Matematich. modelirov., 16:5 (2004), 103–116

[16] J. F. Briesmeister (ed.), MCNP — A General Monte Carlo N-Particle Transport Code, LANL Report LA-13709-M, Los Alamos, 2000

[17] M. E. Zhukovskii, S. V. Podoliako, R. V. Uskov, “Modelirovanie perenosa elektronov v veshchestve na gibridnykh vychislitelnykh sistemakh”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 152–159