Simulation of instability of MHD-flows in future experimental setup
Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical simulations of the future experimental study of magnetorotational instability (MRI) was carried out. The experiment includes angular acceleration of liquid sodium placed in vertical magnetic field by radial electrical current. Numerical results yield the parameters of the future experimental device which allow the development of MRI. Such parameters include the sizes of the experimental device, the magnitude of radial current, and the initial magnetic field strength.
Keywords: magneto-hydrodynamics, simulation of MHD-instabilities in plasma, software toolkit.
@article{MM_2015_27_5_a0,
     author = {K. Sychugov and A. Lugovsky and I. Mukhin and A. Pastuhov and V. Chechetkin},
     title = {Simulation of instability of {MHD-flows} in future experimental setup},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/}
}
TY  - JOUR
AU  - K. Sychugov
AU  - A. Lugovsky
AU  - I. Mukhin
AU  - A. Pastuhov
AU  - V. Chechetkin
TI  - Simulation of instability of MHD-flows in future experimental setup
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 27
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/
LA  - ru
ID  - MM_2015_27_5_a0
ER  - 
%0 Journal Article
%A K. Sychugov
%A A. Lugovsky
%A I. Mukhin
%A A. Pastuhov
%A V. Chechetkin
%T Simulation of instability of MHD-flows in future experimental setup
%J Matematičeskoe modelirovanie
%D 2015
%P 3-27
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/
%G ru
%F MM_2015_27_5_a0
K. Sychugov; A. Lugovsky; I. Mukhin; A. Pastuhov; V. Chechetkin. Simulation of instability of MHD-flows in future experimental setup. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 3-27. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/

[1] E. P. Velikhov, “Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field”, Soviet Physics JETP, 36 (1959), 1398–1404

[2] S. A. Balbus, J. F. Hawley, “A Powerful Local Shear Instability in Weakly Magnetized Disks. I: Linear Analysis”, ApJ., 376 (1991), 214–233

[3] E. P. Velikhov, K. R. Sychugov, V. M. Chechetkin, A. Yu. Lugovskii, A. V. Koldoba, “Magneto-rotational Instability in the Accreting Envelope of a Protostar and the Formation of the Large-Scale Magnetic Field”, Astronomy Rep., 56 (2012), 84–95

[4] K. R. Sychugov, V. M. Chechetkin, A. Iu. Lugovskii, “Magnitorotatsionnaia neustoichivost v akkretsiruiushchei obolochke protozvezdy”, Matematicheskoe modelir., 24:12 (2012), 97–101 | Zbl

[5] H. Ji, J. Goodman, A. Kageyam, “Magnetorotational instability in a rotating liquid metal annulus”, Mon. Not. R. Astron. Soc., 325 (2001), L1–L5

[6] J. Goodman, H. Ji, “Magnetorotational Instability of Dissipative Couette Flow”, J. Fluid Mech., 462 (2002), 365–382 | MR | Zbl

[7] R. Hollenbach, G. Rudiger, “New type of magnetorotational instability in cylindrical Taylor–Couette flow”, Phys. Rev. Lett., 95 (2005), 124501, 4 pp.

[8] G. Rudiger, R. Hollenbach, M. Schultz, D. Shaliybkov, “The stability of MHD Taylor-Couette flow with current-free spiral magnetic fields between conducting cylinders”, Astron. Nachr., 326 (2005), 409–413

[9] V. S. Fedotovskii, N. I. Loginov, L. V. Terenik i dr., “Vrashchenie zhidkogo natriia v koltsevoi kamere pri elektromagnitnom vozdeistvii”, Sb. mat. III Mezhdunarodnogo seminara po magnitorotatsionnoi neustoichivosti v astrofizike i fizike Zemli (Moskva, 2006), 48–57

[10] M. Burin, E. Schartman, H. Ji, R. Cutler, P. Heitzenroeder, W. Liu, L. Morris, S. Raftopolous, “Reduction of Ekman Circulation within Circular Couette Flow”, Exp. Fluids, 40 (2006), 962–966

[11] W. Liu, J. Goodman, H. Ji, “Simulation of Magnetorotational Instability in a Magnetized Couette Flow”, ApJ., 643 (2006), 306–317

[12] J. Stone, M. Norman, “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. I: The Hydrodynamic Algorithms and Tests”, ApJS., 80 (1992), 753–790

[13] J. Stone, M. Norman, “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II: The Magnetohydrodynamic Algorithms and Tests”, ApJS., 80 (1992), 791–818

[14] P. Moresco, T. Alboussiere, “Experimental study of the instability of the Hartmann layer”, J. Fluid Mech., 504 (2004), 167–181 | Zbl

[15] S. Vantieghem, B. Knaepen, “Numerical simulation of magnetohydrodynamic flow in a toroidal duct of square cross-section”, International Journal of Heat and Fluid Flow, 32 (2011), 1120–1128

[16] I. V. Khalzov, A. I. Smoliakov, “K raschetu statsionarnykh magnitogidrodinamicheskikh techenii zhidkikh metallov v koltsevykh kanalakh priamougolnogo secheniia”, Zhurnal tekhnicheskoi fiziki, 76:1 (2006), 28–35

[17] V. Khalzov, V. I. Ilgisonis, A. I. Smolyakov, E. P. Velikhov, “Magnetorotational instability in electrically driven flow of liquid metal: Spectral analysis of global modes”, Physics of Fluids, 18 (2006), 124107, 8 pp. | Zbl

[18] V. Khalzov, V. I. Ilgisonis, A. I. Smolyakov, “Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments”, J. Fluid Mech., 644 (2010), 257–280 | MR | Zbl

[19] E. P. Velikhov, A. A. Ivanov, V. P. Lakhin, K. S. Serebrennikov, “Magneto-rotational instability in differentially rotating liquid metals”, Phys. Lett. A, 355 (2006), 357–365

[20] S. Chandrasechar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, 1961

[21] F. H. Harlow, J. E. Welch, Phys. Fluids, 8 (1965), 2128

[22] Jian-Guo Liu, Wei-Cheng Wang, “An Energy-Preserving MAC-Yee Scheme for the Incompressible MHD Equation”, J. Comput. Phys., 174 (2001), 12–37 | MR | Zbl

[23] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagation, 14 (1966), 302–307 | Zbl

[24] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989 | MR

[25] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005

[26] E. P. Velikhov, A. A. Ivanov, S. V. Zakharov, V. S. Zakharov, A. O. Livadny, K. S. Serebrennikov, “Equilibrium of current driven rotating liquid metal”, Phys. Lett. A, 358 (2006), 216–221 | Zbl

[27] R. Peyret, T. D. Taylor, Computational Methods for Fluid Flow, Scientific Computation, Springer, 1985 | MR | MR

[28] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer, 1991 | MR | Zbl

[29] A. Kageyama, H. Ji, J. Goodman, F. Chen, E. Shoshan, “Numerical and Experimental Investigation of Circulation in Short Cylinders”, J. Phys. Soc. Japan, 73 (2004), 2424–2437