Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_5_a0, author = {K. Sychugov and A. Lugovsky and I. Mukhin and A. Pastuhov and V. Chechetkin}, title = {Simulation of instability of {MHD-flows} in future experimental setup}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--27}, publisher = {mathdoc}, volume = {27}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/} }
TY - JOUR AU - K. Sychugov AU - A. Lugovsky AU - I. Mukhin AU - A. Pastuhov AU - V. Chechetkin TI - Simulation of instability of MHD-flows in future experimental setup JO - Matematičeskoe modelirovanie PY - 2015 SP - 3 EP - 27 VL - 27 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/ LA - ru ID - MM_2015_27_5_a0 ER -
%0 Journal Article %A K. Sychugov %A A. Lugovsky %A I. Mukhin %A A. Pastuhov %A V. Chechetkin %T Simulation of instability of MHD-flows in future experimental setup %J Matematičeskoe modelirovanie %D 2015 %P 3-27 %V 27 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/ %G ru %F MM_2015_27_5_a0
K. Sychugov; A. Lugovsky; I. Mukhin; A. Pastuhov; V. Chechetkin. Simulation of instability of MHD-flows in future experimental setup. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 3-27. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a0/
[1] E. P. Velikhov, “Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field”, Soviet Physics JETP, 36 (1959), 1398–1404
[2] S. A. Balbus, J. F. Hawley, “A Powerful Local Shear Instability in Weakly Magnetized Disks. I: Linear Analysis”, ApJ., 376 (1991), 214–233
[3] E. P. Velikhov, K. R. Sychugov, V. M. Chechetkin, A. Yu. Lugovskii, A. V. Koldoba, “Magneto-rotational Instability in the Accreting Envelope of a Protostar and the Formation of the Large-Scale Magnetic Field”, Astronomy Rep., 56 (2012), 84–95
[4] K. R. Sychugov, V. M. Chechetkin, A. Iu. Lugovskii, “Magnitorotatsionnaia neustoichivost v akkretsiruiushchei obolochke protozvezdy”, Matematicheskoe modelir., 24:12 (2012), 97–101 | Zbl
[5] H. Ji, J. Goodman, A. Kageyam, “Magnetorotational instability in a rotating liquid metal annulus”, Mon. Not. R. Astron. Soc., 325 (2001), L1–L5
[6] J. Goodman, H. Ji, “Magnetorotational Instability of Dissipative Couette Flow”, J. Fluid Mech., 462 (2002), 365–382 | MR | Zbl
[7] R. Hollenbach, G. Rudiger, “New type of magnetorotational instability in cylindrical Taylor–Couette flow”, Phys. Rev. Lett., 95 (2005), 124501, 4 pp.
[8] G. Rudiger, R. Hollenbach, M. Schultz, D. Shaliybkov, “The stability of MHD Taylor-Couette flow with current-free spiral magnetic fields between conducting cylinders”, Astron. Nachr., 326 (2005), 409–413
[9] V. S. Fedotovskii, N. I. Loginov, L. V. Terenik i dr., “Vrashchenie zhidkogo natriia v koltsevoi kamere pri elektromagnitnom vozdeistvii”, Sb. mat. III Mezhdunarodnogo seminara po magnitorotatsionnoi neustoichivosti v astrofizike i fizike Zemli (Moskva, 2006), 48–57
[10] M. Burin, E. Schartman, H. Ji, R. Cutler, P. Heitzenroeder, W. Liu, L. Morris, S. Raftopolous, “Reduction of Ekman Circulation within Circular Couette Flow”, Exp. Fluids, 40 (2006), 962–966
[11] W. Liu, J. Goodman, H. Ji, “Simulation of Magnetorotational Instability in a Magnetized Couette Flow”, ApJ., 643 (2006), 306–317
[12] J. Stone, M. Norman, “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. I: The Hydrodynamic Algorithms and Tests”, ApJS., 80 (1992), 753–790
[13] J. Stone, M. Norman, “ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II: The Magnetohydrodynamic Algorithms and Tests”, ApJS., 80 (1992), 791–818
[14] P. Moresco, T. Alboussiere, “Experimental study of the instability of the Hartmann layer”, J. Fluid Mech., 504 (2004), 167–181 | Zbl
[15] S. Vantieghem, B. Knaepen, “Numerical simulation of magnetohydrodynamic flow in a toroidal duct of square cross-section”, International Journal of Heat and Fluid Flow, 32 (2011), 1120–1128
[16] I. V. Khalzov, A. I. Smoliakov, “K raschetu statsionarnykh magnitogidrodinamicheskikh techenii zhidkikh metallov v koltsevykh kanalakh priamougolnogo secheniia”, Zhurnal tekhnicheskoi fiziki, 76:1 (2006), 28–35
[17] V. Khalzov, V. I. Ilgisonis, A. I. Smolyakov, E. P. Velikhov, “Magnetorotational instability in electrically driven flow of liquid metal: Spectral analysis of global modes”, Physics of Fluids, 18 (2006), 124107, 8 pp. | Zbl
[18] V. Khalzov, V. I. Ilgisonis, A. I. Smolyakov, “Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments”, J. Fluid Mech., 644 (2010), 257–280 | MR | Zbl
[19] E. P. Velikhov, A. A. Ivanov, V. P. Lakhin, K. S. Serebrennikov, “Magneto-rotational instability in differentially rotating liquid metals”, Phys. Lett. A, 355 (2006), 357–365
[20] S. Chandrasechar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, 1961
[21] F. H. Harlow, J. E. Welch, Phys. Fluids, 8 (1965), 2128
[22] Jian-Guo Liu, Wei-Cheng Wang, “An Energy-Preserving MAC-Yee Scheme for the Incompressible MHD Equation”, J. Comput. Phys., 174 (2001), 12–37 | MR | Zbl
[23] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagation, 14 (1966), 302–307 | Zbl
[24] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989 | MR
[25] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005
[26] E. P. Velikhov, A. A. Ivanov, S. V. Zakharov, V. S. Zakharov, A. O. Livadny, K. S. Serebrennikov, “Equilibrium of current driven rotating liquid metal”, Phys. Lett. A, 358 (2006), 216–221 | Zbl
[27] R. Peyret, T. D. Taylor, Computational Methods for Fluid Flow, Scientific Computation, Springer, 1985 | MR | MR
[28] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer, 1991 | MR | Zbl
[29] A. Kageyama, H. Ji, J. Goodman, F. Chen, E. Shoshan, “Numerical and Experimental Investigation of Circulation in Short Cylinders”, J. Phys. Soc. Japan, 73 (2004), 2424–2437