Molecular dynamics study of the surface nano bubble’s contact angle and~volume
Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 115-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The current study presents the molecular dynamics simulations of a surface nanobubble on the liquid-solid interface, where the liquid phase consists of argon and dissolved neon, while the gaseous phase consists of neon and argon vapor. The interactions between all the particles are determined by the Lennard–Jones potential. The contact angle and the bubble volume are studied as a function of the Lennard–Jones parameters for the liquid-solid and gas-solid interactions. Moreover, the influence of gas concentration on the system behavior is studied. The simulations are performed for the systems of tens nm in size, which contain millions molecules. Such simulations are enabled by the use of the developed by authors data structure and the hardware acceleration based on graphics processors.
Keywords: contact angle, numerical simulations, molecular dynamics, nanobubble.
@article{MM_2015_27_4_a7,
     author = {E. F. Moiseeva and D. F. Marin and V. L. Malyshev and N. A. Gumerov and I. Sh. Ahatov},
     title = {Molecular dynamics study of the surface nano bubble{\textquoteright}s contact angle and~volume},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {115--126},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a7/}
}
TY  - JOUR
AU  - E. F. Moiseeva
AU  - D. F. Marin
AU  - V. L. Malyshev
AU  - N. A. Gumerov
AU  - I. Sh. Ahatov
TI  - Molecular dynamics study of the surface nano bubble’s contact angle and~volume
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 115
EP  - 126
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a7/
LA  - ru
ID  - MM_2015_27_4_a7
ER  - 
%0 Journal Article
%A E. F. Moiseeva
%A D. F. Marin
%A V. L. Malyshev
%A N. A. Gumerov
%A I. Sh. Ahatov
%T Molecular dynamics study of the surface nano bubble’s contact angle and~volume
%J Matematičeskoe modelirovanie
%D 2015
%P 115-126
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_4_a7/
%G ru
%F MM_2015_27_4_a7
E. F. Moiseeva; D. F. Marin; V. L. Malyshev; N. A. Gumerov; I. Sh. Ahatov. Molecular dynamics study of the surface nano bubble’s contact angle and~volume. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 115-126. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a7/

[1] N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, “Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy”, Langmuir, 16 (2000), 6377–6380 | DOI

[2] X. H. Zhang, X. D. Zhang, S. T. Lou, Z. X. Zhang, J. L. Sun, J. Hu, “Degassing and temperature effects on the formation of nanobubbles at the mica/water interface”, Langmuir, 20 (2004), 3813–3815 | DOI

[3] X. H. Zhang, X. Zhang, J. Sun, Z. Zhang, G. Li, H. Fang, X. Xiao, X. Zeng, J. Hu, “Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface”, Langmuir, 23 (2007), 1778–1783 | DOI

[4] J. R. T. Seddon, E. S. Kooij, B. Poelsema, H. J. W. Zandvliet, D. Lohse, “Surface bubble nucleation stability”, Physical Review Letters, 106 (2011), 056101 | DOI

[5] J. H. Weijs, J. H. Snoeijer, D. Lohse, “Formation of surface nanobubbles and the universality of their contact angles: A molecular dynamics approach”, Physical Review Letters, 108 (2012), 104501 | DOI

[6] S. Kohno, S. Toh, Molecular dynamics simulation of nanobubbles in the bulk and on the substrate, , Japan Society for Simulation Technology, 2012 http://www.jsst.jp/e/JSST2012/extended_abstract/pdf/104.pdf

[7] E. Dietrich, H. J. W. Zandvliet, D. Lohse, J. R. T. Seddon, “Particle tracking around surface nanobubbles”, Journal of Physics: Condensed Matter, 25 (2013), 184009 | DOI

[8] P. Grosfils, “Coarse-grained modelling of surface nanobubbles”, Journal of Physics: Condensed Matter, 25:18 (2013), 184006 | DOI

[9] X. H. Zhang, N. Maeda, V. S. J. Craig, “Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions”, Langmuir, 22:11 (2006), 5025–5035 | DOI

[10] F.-C. Wang, Y.-P. Zhao, “Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study”, Colloid and Polymer Science, 291:2 (2013), 307–315 | DOI

[11] D. Zhou, Z. H. Ansari, J. Mi, “Modeling of bubble nucleation of an air-water mixture near hydrophobic walls”, Journal of Physics: Condensed Matter, 25:18 (2013), 184004 | DOI

[12] J. A. Anderson, C. D. Lorenz, A. Travesset, “General purpose molecular dynamics simulations fully implemented on graphics processing units”, Journal of Computational Physics, 227:10 (2008), 5342–5359 | DOI | Zbl

[13] A. Sunarso, T. Tsuji, S. Chono, “GPU — accelerated molecular dynamics simulation for study of liquid crystalline flows”, Journal of Computational Physics, 229:15 (2010), 5486–5497 | DOI | Zbl

[14] E. Moiseeva, C. Mikhaylenko, V. Malyshev, D. Maryin, N. Gumerov, “FMM/GPU accelerated molecular dynamics simulation of phase transitions in water-nitrogen-metal systems”, Proceedings of ASME 2012 International Mechanical Engineering Congress and Exposition, v. 7, 2012, 883–892

[15] V. L. Malyshev, D. F. Marin, E. F. Moiseeva, N. A. Gumerov, I. Sh. Akhatov, “Uskorenie molekuliarno-dinamicheskogo modelirovaniia nepoliarnykh molekul pri pomoshchi GPU”, Vestnik NNGU, 2014, no. 3, 126–133

[16] T. Kimura, S. Maruyama, “Molecular dynamics simulation of heterogeneous nucleation of a liquid droplet on a solid surface”, Microscale Thermophysical Engineering, 6 (2002), 3–13 | DOI

[17] H. J. C. Berendsen, J. P. M. Postma, van W. F. Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, Journal of Chemical Physics, 81:8 (1984), 3684–3690 | DOI

[18] E. M. Yezdimer, A. A. Chialvo, P. T. Cummings, “Examination of chain length effects on the solubility of alkanes in near-critical and supercritical aqueoussolutions”, The Journal of Physical Chemistry B, 105:4 (2001), 841–847 | DOI

[19] J. Delhommelle, P. Milli, “Inadequacy of the Lorentz-Berthelot combining rules for accurate predictionsof equilibrium properties by molecular simulation”, Molecular Physics, 99:8 (2001), 619–625 | DOI

[20] V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami, L. S. Davis, “Automatic online tuning for fast gaussian summation”, Advances in Neural Information Processing Systems, NIPS (2008) http://papers.nips.cc/paper/3420-automatic-online-tuning-for-fast-gaussian-summation