Heat and mass transfer in a porous material with an allowance for the relaxation (process) of the mass flux
Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 97-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of heat and mass transfer is viewed in a porous body with two types of pores suitable for the description of the initial stage of the penetration of the substance in a porous system (or the reverse process — extracting material out of it). The relaxation of the diffusion flux is taken into account in large channels. A solution of the task with typical in practice additional conditions was received at which were found the kinetic function of impregnation (extraction) of the porous medium and the flux density of the substance out of the body.
Keywords: relaxation, porous body, mass transfer, two-component media.
Mots-clés : saturation
@article{MM_2015_27_4_a6,
     author = {A. I. Moshinskij},
     title = {Heat and mass transfer in a porous material with an allowance for the relaxation (process) of the mass flux},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--114},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a6/}
}
TY  - JOUR
AU  - A. I. Moshinskij
TI  - Heat and mass transfer in a porous material with an allowance for the relaxation (process) of the mass flux
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 97
EP  - 114
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a6/
LA  - ru
ID  - MM_2015_27_4_a6
ER  - 
%0 Journal Article
%A A. I. Moshinskij
%T Heat and mass transfer in a porous material with an allowance for the relaxation (process) of the mass flux
%J Matematičeskoe modelirovanie
%D 2015
%P 97-114
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_4_a6/
%G ru
%F MM_2015_27_4_a6
A. I. Moshinskij. Heat and mass transfer in a porous material with an allowance for the relaxation (process) of the mass flux. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 97-114. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a6/

[1] P. Ya. Polubarinova-Kothina i dr. (red.), Razvitie issledovanii po teorii filtratsii v SSSR (1917–1967), Nauka, M., 1969, 545 pp.

[2] V. N. Nikolaevskii, “Konvectivnaia diffuzia v poristykh sredakh”, Prikl. Matematika i mekhanika, 23:6 (1959), 1042–1050 | MR | Zbl

[3] H. Brenner, “The diffusion model of longitudinal mixing in beds of finite length. Numerical values”, Chem. Engng. Sci., 17 (1962), 229–243 | DOI

[4] G. A. Turner, “The flow-structure in packed beds. A theoretical investigation utilizing frequency response”, Chem. Eng. Sci., 7:3 (1958), 156–165 | DOI

[5] R. Aris, “Diffusion and reaction in flow system of Turners' stracture”, Chem. Eng. Sci., 10:1/2 (1959), 80–87 | DOI

[6] V. G. Levich, V. S. Markin, Yu. A. Chizmadzhev, “O gidrodinamicheskom peremeshivanii v modeli poristoi sredy s zastoinymi zonami”, Doklady AN SSSR, 166:6 (1966), 1401–1404

[7] D. Tondeur, “Le lavage des gâteaux de filtration”, Chimie industrie. Génie chimique, 103:21 (1970), 2799–2808

[8] Yu. A. Buevich, Yu. A. Korneev, “O pepenose tepla i massy v dispersnoi srede”, Prikl. mekhanika i tekh. fizika, 1974, no. 4, 79–87

[9] Yu. A. Buevich, “Problemy perenosa v dispersnykh sredakh”, Teplomassoobmen MMF. Problemnye doklady, Sektsiia 4, 5, Minsk, 1988, 100–114

[10] L. B. Dvorkin, “K teorii konvectivnoi diffuzii v poristykh sredakh. III: Konvectivnaia diffuziai solei v poristykh sredakh s uchetom vliianiia “tupikovykh por””, Zhurn. fiz. khimii, 42:4 (1968), 948–956

[11] V. N. Nikolaevskii, Mekhanika poristykh i treshchinovatykh sred, Nedra, M., 1984, 232 pp.

[12] A. V. Lykov, Teplomassoobmen, spravochnik, Energiia, M., 1978, 480 pp.

[13] B. Kh. Khuzhayorov, “Macroscopic Simulation of Relaxation Mass Transport in a Porous Medium”, Fluid Dynamics, 39:5 (2004), 693–702 | DOI | MR

[14] V. A. Sirenek, A. F. Kryuchkov, “Veroiatnostnoe reshenie nachalno-kraevoi zadachi dlia giperboliceskogo uravneniia massoperenosa”, Matem. modelirovanie, 10:6 (1998), 107–117 | MR | Zbl

[15] A. I. Moshinskij, “The Initial Stage of Mass Transfer in Porous Material with Two Types of Pores”, Mathematical Models and Computer Simulations, 5:6 (2013), 575–585 | DOI | MR | Zbl

[16] Yu. I. Babenko, E. V. Ivanov, “Extraction from a solid with a bidisperse porous structure”, Theoretical Foundations of Chemical Engineering, 43:4 (2009), 388–394 | DOI

[17] A. I. Moshinskii, “Mathematical model of heat and mass transfer in a bidisperse porous material”, J. Appl. Mech. Tech. Phys., 50:5 (2009), 831–840 | DOI | Zbl

[18] M. Kats, Neskolko veroiatnostnykh zadach fiziki i matematiki, Nauka, M., 1967, 176 pp.

[19] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[20] G. von Doetsch, Anleitung zum praktischen Gebrauch der Laplace Transformation und der $Z$-Transformation, Oldenbourg–Munchen, 1961 | MR | MR

[21] N. V. Antonishin, V. V. Lushchikov, “Perenos tepla i massy v dispersnykh sredakh”, Protsessy perenosa v apparatakh s dispersnymi sistemami, Sb. nauch. trudov ITMO im. A. V. Lykova AN BSSR, Minsk, 1986, 3–25

[22] J. D. Cole, Perturbation Methods in applied Mathematics, Ginn (Blaisdell), Boston, 1968 | MR | MR | Zbl

[23] V. A. Vasilev, Iu. M. Romanovskii, V. G. Iakhno, Avtovolnovye protsessy, ed. D. S. Chernavskii, Nauka, M., 1987, 240 pp.