Solution of integral equations by means of subhierarchic method for generalized computational grids
Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application subhierarchic method to integral equations for generalized computational grids. The justification of the subhierarchic method was produced. Numerical results for the problem of diffraction by a nonplanar perfectly conducting screen are presented.
Keywords: subhierarchic method, integral equation, numerical methods, generalized matrix, generalized computational grid.
@article{MM_2015_27_4_a5,
     author = {M. Y. Medvedik},
     title = {Solution of integral equations by means of subhierarchic method for generalized computational grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/}
}
TY  - JOUR
AU  - M. Y. Medvedik
TI  - Solution of integral equations by means of subhierarchic method for generalized computational grids
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 81
EP  - 96
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/
LA  - ru
ID  - MM_2015_27_4_a5
ER  - 
%0 Journal Article
%A M. Y. Medvedik
%T Solution of integral equations by means of subhierarchic method for generalized computational grids
%J Matematičeskoe modelirovanie
%D 2015
%P 81-96
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/
%G ru
%F MM_2015_27_4_a5
M. Y. Medvedik. Solution of integral equations by means of subhierarchic method for generalized computational grids. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 81-96. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/

[1] A. S. Ilyinsky, Iu. G. Smirnov, Electromagnetic wave diffraction by conducting screens, VSP, Utrecht, the Netherlands, 1998

[2] A. B. Samokhin, Integral equations and iteration methods in electromagnetic scattering, VSP, Utrecht, the Netherlands, 2001 | Zbl

[3] M. Iu. Medvedik, “Primenenie subierarkhicheskogo metoda v zadachakh elektrodinamiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 87–97

[4] M. Iu. Medvedik, Iu. G. Smirnov, “Subhierarchical method for solving problems of diffraction of electromagnetic waves by a dielectric body in a rectangular waveguide”, Journal of Communications Technology and Electronics, 56:8 (2011), 947–952 | DOI

[5] M. Iu. Medvedik, “A Subhierarchic Method for solving the Lippmann–Schwinger integral equation on bodies of complex shapes”, Journal of Communications Technology and Electronics, 57:2 (2012), 158–163 | DOI | MR | Zbl

[6] M. Iu. Medvedik, I. A. Rodionova, Iu. G. Smirnov, “A subhierarchic method for the solution of a pseudodifferential equation in the problem of diffraction in layers coupled through an aperture”, Journal of Communications Technology and Electronics, 57:3 (2012), 252–261 | DOI

[7] Iu. G. Smirnov, M. Iu. Medvedik, E. E. Grishina, “Determination of the effective permittivity of a body in a waveguide from the reflection coefficient”, Journal of Communications Technology and Electronics, 59:2 (2014), 145–149 | DOI | DOI | MR

[8] M. Iu. Medvedik, Iu. G. Smirnov, “Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 114–122 | DOI | DOI | MR | Zbl

[9] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[10] M. L. Andreev, N. A. Zarkevich, A. N. Isakov, O. I. Kozyreva, I. V. Plokhov, “Razbienie N-mernogo kuba na simpleksy s sokhraneniem simmetrii”, Nauchno-tekhnicheskii vestnik Povolzhia, 2011, no. 3, 21–24

[11] S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surface of arbitrary shape”, IEEE Trans. Antennas Propagation, Ap-30:3 (1982), 409–418 | DOI

[12] I. Hänninen, M. Taskinen, J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions”, Prog. Electromagn. Res. PIER, 63 (2006), 243–278 | DOI

[13] M. Iu. Medvedik, Iu. G. Smirnov, S. I. Sobolev, “Parallelnyi algoritm rascheta poverkhnostnykh tokov v elektromagnitnoi zadache difraktsii na ekrane”, Vychislitelnye metody i programmirovanie, 6 (2005), 99–108 | Zbl

[14] M. Iu. Medvedik, “Calculating the surface currents in electromagnetic scattering by screens of complex geometry”, Computational Mathematics and Mathematical Physics, 53:4 (2013), 469–476 | DOI | DOI | MR | Zbl

[15] M. Iu. Medvedik, “Numerical solution of the problem of diffraction of electromagnetic waves by nonplanar screens of complex geometric shapes by means of a subhierarchic method”, Journal of Communications Technology and Electronics, 58:10 (2013), 1019–1023 | DOI | DOI