Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_4_a5, author = {M. Y. Medvedik}, title = {Solution of integral equations by means of subhierarchic method for generalized computational grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--96}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/} }
TY - JOUR AU - M. Y. Medvedik TI - Solution of integral equations by means of subhierarchic method for generalized computational grids JO - Matematičeskoe modelirovanie PY - 2015 SP - 81 EP - 96 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/ LA - ru ID - MM_2015_27_4_a5 ER -
M. Y. Medvedik. Solution of integral equations by means of subhierarchic method for generalized computational grids. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 81-96. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a5/
[1] A. S. Ilyinsky, Iu. G. Smirnov, Electromagnetic wave diffraction by conducting screens, VSP, Utrecht, the Netherlands, 1998
[2] A. B. Samokhin, Integral equations and iteration methods in electromagnetic scattering, VSP, Utrecht, the Netherlands, 2001 | Zbl
[3] M. Iu. Medvedik, “Primenenie subierarkhicheskogo metoda v zadachakh elektrodinamiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 87–97
[4] M. Iu. Medvedik, Iu. G. Smirnov, “Subhierarchical method for solving problems of diffraction of electromagnetic waves by a dielectric body in a rectangular waveguide”, Journal of Communications Technology and Electronics, 56:8 (2011), 947–952 | DOI
[5] M. Iu. Medvedik, “A Subhierarchic Method for solving the Lippmann–Schwinger integral equation on bodies of complex shapes”, Journal of Communications Technology and Electronics, 57:2 (2012), 158–163 | DOI | MR | Zbl
[6] M. Iu. Medvedik, I. A. Rodionova, Iu. G. Smirnov, “A subhierarchic method for the solution of a pseudodifferential equation in the problem of diffraction in layers coupled through an aperture”, Journal of Communications Technology and Electronics, 57:3 (2012), 252–261 | DOI
[7] Iu. G. Smirnov, M. Iu. Medvedik, E. E. Grishina, “Determination of the effective permittivity of a body in a waveguide from the reflection coefficient”, Journal of Communications Technology and Electronics, 59:2 (2014), 145–149 | DOI | DOI | MR
[8] M. Iu. Medvedik, Iu. G. Smirnov, “Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 114–122 | DOI | DOI | MR | Zbl
[9] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR
[10] M. L. Andreev, N. A. Zarkevich, A. N. Isakov, O. I. Kozyreva, I. V. Plokhov, “Razbienie N-mernogo kuba na simpleksy s sokhraneniem simmetrii”, Nauchno-tekhnicheskii vestnik Povolzhia, 2011, no. 3, 21–24
[11] S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surface of arbitrary shape”, IEEE Trans. Antennas Propagation, Ap-30:3 (1982), 409–418 | DOI
[12] I. Hänninen, M. Taskinen, J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions”, Prog. Electromagn. Res. PIER, 63 (2006), 243–278 | DOI
[13] M. Iu. Medvedik, Iu. G. Smirnov, S. I. Sobolev, “Parallelnyi algoritm rascheta poverkhnostnykh tokov v elektromagnitnoi zadache difraktsii na ekrane”, Vychislitelnye metody i programmirovanie, 6 (2005), 99–108 | Zbl
[14] M. Iu. Medvedik, “Calculating the surface currents in electromagnetic scattering by screens of complex geometry”, Computational Mathematics and Mathematical Physics, 53:4 (2013), 469–476 | DOI | DOI | MR | Zbl
[15] M. Iu. Medvedik, “Numerical solution of the problem of diffraction of electromagnetic waves by nonplanar screens of complex geometric shapes by means of a subhierarchic method”, Journal of Communications Technology and Electronics, 58:10 (2013), 1019–1023 | DOI | DOI