The widerange equation of state for gasios and liquid plasma
Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 31-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

New correction for charged particles interaction in gasios plasma was proposed and validated. Using this correction in Saha equations allowed to formally apply them to zero temperature. This gives reasonable values for ionizatoin degree and thermodynamics. This essentially expands Saha equations to extra-high densities and moderate temperatures, where plasma becomes liquid. Addional classic Debay model was improved and the Simple harmonic oscillators model was disproven. Liquid plasme is well described with the Thomas–Fermi model with quantum and excange corrections. A superfast algorithm was proposed to solve equations of this model. By means of special interpolation Thomas–Fermi model is joined with the Saha model. This gives wide-range queation of state for gasion and liquid plasma. Accrording to this model hugoniots were calculated with radiation terms. Shell effects were analyzed.
Keywords: plasma, Thomas–Fermi model, charged particles interaction, widerange equation of state, shell efffects.
Mots-clés : Saha equations, hugoniots
@article{MM_2015_27_4_a2,
     author = {N. N. Kalitkin and K. I. Lutskiy},
     title = {The widerange equation of state for gasios and liquid plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--49},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a2/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - K. I. Lutskiy
TI  - The widerange equation of state for gasios and liquid plasma
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 31
EP  - 49
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a2/
LA  - ru
ID  - MM_2015_27_4_a2
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A K. I. Lutskiy
%T The widerange equation of state for gasios and liquid plasma
%J Matematičeskoe modelirovanie
%D 2015
%P 31-49
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_4_a2/
%G ru
%F MM_2015_27_4_a2
N. N. Kalitkin; K. I. Lutskiy. The widerange equation of state for gasios and liquid plasma. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 31-49. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a2/

[1] L. D. Landau, E. M. Lifshitz, Statistical physics, v. 5, 2nd ed., Addison-Wesley, 1969

[2] M. M. Basko, Uravnenie sostoianiia metallov v priblizhenii srednego iona, Prepr. ITEF, No 57, M., 1982

[3] N. N. Kalitkin, I. V. Ritus, A. M. Mironov, “Ionizatsionnoe ravnovesie s uchetom vyrozhdeniia elektronov”, Preprinty IPM, 1983, 046, 27 pp.

[4] W. D. Kraeft, D. Kremp, W. Ebeling, G. Ropke, Quantum Statistics of Charged Particle Systems, Akademie-Verlag, Berlin; Plenum, London–New York, 1986

[5] V. E. Fortov, I. T. Yakubov, The physics of non-ideal plasma, World Scientific Pub Co Inc, 1998, 360 pp.

[6] H. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, 1974, 424 pp.

[7] N. N. Kalitkin, I. A. Kozlitin, “A model of quasi-independent particles for a plasma microfield”, Doklady Physics, 53:2 (2008), 61–65 | DOI | Zbl

[8] N. N. Kalitkin, I. A. Kozlitin, “Microfield model of quasi-independent particles and nonideal plasma”, Plasma Physics Reports, 37:2 (2011), 191–202 | DOI | MR

[9] N. N. Kalitkin, L. V. Kuzmina, “Quantum-statistical equation of state”, Fizika Plazmy, 2 (1976), 858–868

[10] R. V. Golovanov, K. I. Lutskii, “Computation of the integral Fermi–Dirac function”, Mathematical Models and Computer Simulations, 4:5 (2012), 464–470 | DOI | MR | Zbl

[11] N. N. Kalitkin, “Solution of eigenvalue problems by the method of complemented vector”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 5:6 (1965), 1107–1115 | MR | Zbl

[12] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Computation on Quasi-Equidistant Grids, PhysMathLit, M., 2005

[13] Ya. B. Zel'dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic, New York, 1966; v. I, 1960

[14] N. N. Kalitkin, L. V. Kuzmina, “Model oscilliruiushchikh yader”, Chislinnie Metody Mekhaniki Sploshnoi Sredy, 8:7 (1977), 46–53

[15] N. N. Kalitkin, “The Thomas-Fermi model of the atom with quantum and exchange corrections”, Soviet physics jetp-USSR, 11:5 (1960), 1106–1110 | MR

[16] R. Latter, “Temperature Behavior of the Thomas-Fermi Statistical Model for Atoms”, Phys. Rev., 99 (1955), 1854 | DOI | Zbl

[17] N. N. Kalitkin, L. V. Kuzmina, “Tablitsy termodinamicheskikh funktsii veshchestv pri vysokikh kontsentratsiiakh energii”, Preprinty IPM, 1975, 035

[18] N. N. Kalitkin, L. V. Kuzmina, A. I. Funtikov, “Glavnye udarnye adiabaty 10 metallov”, Matem. modelirovanie, 14:10 (2002), 27–42 | Zbl

[19] N. N. Kalitkin, K. I. Lutskiy, “Saha equation expansion to liquid plasma”, Doklady Physics, 59:7 (2014), 299–303 | DOI