Discontinuous Galerkin method for numerical simulation of dynamic processes in solids
Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 96-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is applying of Discontinuous Galerkin Method to deformation and destruction problems of elastoplastic bodies as well as to hydroelastic problems. Two-sided crack model for destruction, Prandtl–Reuss elastoplastic model, dynamic contact of bodies, wave propagation through coupled elastic-acoustic media for marine seismology, comparison of reflected waves in fluid-filled and infinite thin crack models and underwater objects detection are described. Method was implemented for HPC infrastructure.
Keywords: Discontinuous Galerkin Method, mechanics of deformable solids, HPC, wave problems in coupled elastic-acoustic media, marine seismology, fluid-filled crack, dynamic contact of bodies
Mots-clés : destruction.
@article{MM_2015_27_3_a6,
     author = {V. A. Miryaha and A. V. Sannikov and I. B. Petrov},
     title = {Discontinuous {Galerkin} method for numerical simulation of dynamic processes in solids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     year = {2015},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a6/}
}
TY  - JOUR
AU  - V. A. Miryaha
AU  - A. V. Sannikov
AU  - I. B. Petrov
TI  - Discontinuous Galerkin method for numerical simulation of dynamic processes in solids
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 96
EP  - 108
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a6/
LA  - ru
ID  - MM_2015_27_3_a6
ER  - 
%0 Journal Article
%A V. A. Miryaha
%A A. V. Sannikov
%A I. B. Petrov
%T Discontinuous Galerkin method for numerical simulation of dynamic processes in solids
%J Matematičeskoe modelirovanie
%D 2015
%P 96-108
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/MM_2015_27_3_a6/
%G ru
%F MM_2015_27_3_a6
V. A. Miryaha; A. V. Sannikov; I. B. Petrov. Discontinuous Galerkin method for numerical simulation of dynamic processes in solids. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a6/

[1] J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54, Springer, 2008 | DOI

[2] M. Käser, M. Dumbser, “An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two-dimensional isotropic case with external source terms”, Geophys. J. Int., 166 (2006), 855–877 | DOI

[3] J. Virieux, “SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophys., 49:11, November (1984), 1933–1957 | DOI

[4] L. C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas, “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media”, Journal of Computational Physics, 229 (2010), 9373–9396 | DOI

[5] M. Käser, M. Dumbser, “A Highly Accurate Discontinuous Galerkin Method for Complex Interfaces Between Solids and Moving Fluids”, Geophysics, 73:3 (2008) | DOI

[6] C. E. Castro, M. Käser, G. B. Brietzke, “Seismic waves in heterogeneous material: subcell resolution”, Geophys. J. Int., 182 (2010), 250–264

[7] R. L. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002

[8] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, 2-nd ed., Springer, 1999

[9] J. A. Trangenstein, Numerical solution of hyperbolic partial differential equations, Cambridge University Press, 2008

[10] E. Sonnendrücker, Numerical methods for hyperbolic systems, Lecture notes (Sommersemester, 2013)

[11] D. A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012

[12] A. G. Kulikovskii, N. V. Pogorelov, A. Y. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman and Hall/CRC, Boca Raton, 2001

[13] C. Pelties, A. A. Gabriel, J. P. Ampuero, “Verification of an ADER-DG method for complex dynamic rupture problems”, Geosci. Model Dev. Discuss., 6 (2013), 5981–6034 | DOI

[14] M. Hochbruck, T. Pažur, A. Schulz, E. Thawinan, C. Wieners, Efficient time integration for discontinuous Galerkin approximations of linear wave equations, , 2013 http://na.math.kit.edu/download/papers/TI-DG-Wave.pdf

[15] C. Pelties, M. Käser, “Dynamic Rupture Modelling on Unstructured Meshes Using a Discontinuous Galerkin Method”, Computational Methods in Structural Dynamics and Earthquake Engineering, 2011, 3201–3209

[16] M. Käser, C. Pelties, C. E. Castro, H. Djikpesse, M. Prange, “Wave Field Modeling in Exploration Seismology Using the Discontinuous Galerkin Finite Element Method on HPC-infrastructure”, The Leading Edge, 29 (2010), 76–85 | DOI

[17] L. Noels, R. Radovitzky, “An explicit discontinuous Galerkin method for non-linear solid dynamics: Formulation, parallel implementationand scalability properties”, International journal for numerical methods in engineering, 74 (2008), 1393–1420 | DOI

[18] V. A. Miryaha, A. V. Sannikov, “O programmnoi realizatsii parallelnogo algoritma razryvnogo metoda Galerkina dlia chislennogo modelirovaniia volnovykh protsessov v geterogennykh tverdykh deformiruemykh sredakh”, Trudy 56-i nauchnoi konferentsii MFTI, v. 2, 2013, 135

[19] J. R. Shewchuk, “Delaunay Refinement Algorithms for Triangular Mesh Generation”, Computational Geometry: Theory and Applications, 22:1–3, May (2002), 21–74 | DOI

[20] G. Karypis, V. Kumar, “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”, SIAM Journal on Scientific Computing, 20:1 (1999), 359–392 | DOI

[21] S. Tirupathi, J. S. Hesthaven, Y. Liang, M. Parmentier, “Multilevel and Local Timestepping Discontinuous Galerkin Methods for Magma Dynamics”, Geophys. J. Int., 2013, 1–12

[22] A. Demirel, J. Niegemann, K. Busch, M. Hochbruck, “Efficient Multiple Time-Stepping Algorithms of Higher Order”, Journal of Computational Physics, 2014 (to appear)

[23] I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, I. E. Kvasov, “Setochno-kharakteristicheskii metod s ispolzovaniem interpolyatsii vysokikh poryadkov na tetraedralnykh ierarkhicheskikh setkakh s kratnym shagom po vremeni”, Matem. modelirovanie, 25:2 (2013), 42–52

[24] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Chislennoe modelirovanie seismicheskoi aktivnosti setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 53:10 (2013), 1709–1720 | DOI

[25] M. V. Muratov, I. B. Petrov, “Raschet volnovykh otklikov ot sistem subvertikalnykh makrotreschin s ispolzovaniem setochno-kharakteristicheskogo metoda”, Matem. modelirovanie, 25:3 (2013), 89–104

[26] I. E. Kvasov, I. B. Petrov, “Chislennoe modelirovanie volnovykh protsessov v geologicheskikh sredakh v zadachakh seismorazvedki s pomoschyu vysokoproizvoditelnykh EVM”, Zhurnal vychislitelnoi matematiki i matem. fiziki, 52:2 (2012), 330–341

[27] M. Frehner, “Krauklis wave initiation in fluid-filled fractures by seismic body waves”, Geophysics, 79:1 (2014), 27–35

[28] P. C. Etter, Underwater Acoustic Modelling and Simulation, 3rd edition, Spon Press, London, 2003

[29] Acad. Press, New York–London, 1964

[30] I. B. Petrov, F. B. Chelnokov, “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1562–1579

[31] V. I. Golubev, D. P. Grigorievikh, I. B. Petrov, N. I. Khokhlov, “Otsenka seismostoikosti kupolnykh konstruktsii na osnove rezultatov polnovolnovogo modelirovaniia”, International Journal for Computational Civil and Structural Engineering, 10:1 (2014), 65–71

[32] M. A. Schweitzer, Meshfree and Generalized Finite Element Methods, Habilitationsschrift an der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn, 2008

[33] A. V. Gerasimov et al., Teoreticheskie i eksperimentalnye issledovaniia vysokoskorostnogo vzaimodeistviia tel, Izd-vo Tomskogo universiteta, Tomsk, 2007, 177–187

[34] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Issledovanie vliianiia limitera na poriadok tochnosti resheniia razryvnym metodom Galerkina”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 034, 31 pp.

[35] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Math. Models and Comp. Simulations, 5:4 (2013), 346–349 | DOI

[36] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Limiter povyshennogo poriadka tochnosti dlia razryvnogo metoda Galerkina na treugolnykh setkakh”, Preprinty IPM im. M. V. Keldysha RAN, 2013, 053, 26 pp.