Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach)
Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 63-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a new approach to determination of dependencies between limited input and output data. It is based on randomized static and dynamic models and on estimation of the probabilistic characteristics of their parameters. The static and dynamic models are described by the functional polynomials. Entropy approach is developed for parametric and nonparametric estimation, for which generalized informational Boltzmann's and Fermi's entropies are used.
Keywords: randomized model, robustness, entropy functional, entropy function, variation of entropy functional, likelihood function, likelihood functional
Mots-clés : Volterra polinomials, multiplicative algorithms.
@article{MM_2015_27_3_a4,
     author = {A. Yu. Popkov and Yu. S. Popkov},
     title = {Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach)},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--85},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Popkov
AU  - Yu. S. Popkov
TI  - Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach)
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 63
EP  - 85
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a4/
LA  - ru
ID  - MM_2015_27_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Popkov
%A Yu. S. Popkov
%T Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach)
%J Matematičeskoe modelirovanie
%D 2015
%P 63-85
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_3_a4/
%G ru
%F MM_2015_27_3_a4
A. Yu. Popkov; Yu. S. Popkov. Parametric and nonparametric estimation for characteristics of randomized models under limited data (entropy approach). Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 63-85. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a4/

[1] S. A. Aivazian, V. S. Mhitrian, Prikladnaia statistika i osnovy ekonometriki, Interreklama, M., 2003

[2] M. G. Kendall, A. Stuart, The advanced theory of statistics, v. II, Inference and Relationship, Griffin, London, 1973

[3] A. I. Kobzar, Prikladnaia matematicheskaia statistika, Fizmatlit, M., 2006

[4] H. Cramér, Mathematical methods of statistics, v. 9, Princeton university press, 1999

[5] A. Golan, G. Judge, D. Miller, Maximum Entropy Econometrics: Robust Estimation with Limited Data, John Wiley Sons, New York, 1996

[6] A. Golan, “Information and Entropy Econometrics — a Review and Synthesis”, Foundation and Trends in Econometrics, 2:1–2 (2006), 1–145

[7] A. N. Shiriaev, Osnovy stohasticheskoi finansovoi matematiki, Fazis, M., 2004, 1056 pp.

[8] V. N. Vapnik, A. I. Chervonenkis, Teoria raspoznavania obrazov, Nauka, M., 1974, 416 pp.

[9] B. T. Poliak, P. S. Shcherbakov, Robastnaia ustoichivost i upravlenie, Nauka, M., 2002

[10] E. T. Jaynes, “Information Theory and Statistical Mechanics”, Phys. Rev., 106 (1957), 620–630 | DOI

[11] R. D. Levin, M. Tribus (eds.), The maximum entropy formalism, MIT Press, 1979

[12] E. T. Jaynes, Papers on probability, statistics and statistical physics, Kluwer Academic Publisher, Dordrecht, 1989

[13] J. N. Kapur, Maximum entropy models in science and engineering, John Wiley Sons, Inc., 1989

[14] E. T. Jaynes, Probability Theory. The logic and science, Cambridge University Press, 2003

[15] J. Racine, E. Maasoumi, “A versatile and robust metric entropy test of time-reversibility, and other hypotheses”, Journal of Econometrics, 138 (2007), 547–567 | DOI

[16] P. J. Huber, Robust Statistics, John Willey Sons, 2004, 308 pp.

[17] Ia. Z. Tsypkin, Y. S. Popkov, Teoriia nelineinykh impulsnykh system, Nauka, M., 1973

[18] L. Boltzmann, On the link between the second beginning of mechanical calory theory and probability theory in theorems of thermal equilibrium, 1877; Избр. труды “Классики науки”, 1984, 190–236

[19] S. Kullback, R. A. Leibler, “On information and Sufficiency”, Ann. of Math. Statistics, 22:1 (1951), 79–86 | DOI

[20] C. Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical Journal, 28:4 (1949), 656–715 | DOI

[21] Y. S. Popkov, Teoriia makrosistem. Ravnovesnye modeli, URSS, M., 2012

[22] L. Z. Elsgolts, Variatsionnoe ischislenie, Izd. LKI, M., 2008

[23] Y. S. Popkov, “New class of multiplicative algorithms for solving of entropy-linear programms”, European Journal of Operation Research, 174 (2006), 1368–1379 | DOI

[24] Yu. S. Popkov, “Macrosystems Theory and its Applications”, Lecture Notes in Control and Information Sciences, 203, Springer, London, 1995, 324

[25] L. D. Landau, E. M. Lifshitz, Statistical physics, v. I, Course of theoretical physics, 5, Elsevier, 1980