Mathematical model of cellular transport network self-organization and~functioning
Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contemporary cell investigation methods allowed molecular transport mechanisms of intracellular substances and cell components to be described. Analysis of completeness and consistency of existent data of transport network nature and its utilization is a problem of mathematical modeling. Self-organization of the cell transport network and transport of the cargo and organelles upon it are modeled in this work by the examples of mitotic spindle formation, retrograde axonal transport and lipid transport.
Mots-clés : cell, microtubules.
Keywords: metabolism, transport network, vesicles, endosomes, self-organization
@article{MM_2015_27_3_a3,
     author = {K. A. Novikov and A. A. Romanyukha and A. N. Gratchev and J. G. Kzhyshkowska and O. A. Melnichenko},
     title = {Mathematical model of cellular transport network self-organization and~functioning},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a3/}
}
TY  - JOUR
AU  - K. A. Novikov
AU  - A. A. Romanyukha
AU  - A. N. Gratchev
AU  - J. G. Kzhyshkowska
AU  - O. A. Melnichenko
TI  - Mathematical model of cellular transport network self-organization and~functioning
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 49
EP  - 62
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a3/
LA  - ru
ID  - MM_2015_27_3_a3
ER  - 
%0 Journal Article
%A K. A. Novikov
%A A. A. Romanyukha
%A A. N. Gratchev
%A J. G. Kzhyshkowska
%A O. A. Melnichenko
%T Mathematical model of cellular transport network self-organization and~functioning
%J Matematičeskoe modelirovanie
%D 2015
%P 49-62
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_3_a3/
%G ru
%F MM_2015_27_3_a3
K. A. Novikov; A. A. Romanyukha; A. N. Gratchev; J. G. Kzhyshkowska; O. A. Melnichenko. Mathematical model of cellular transport network self-organization and~functioning. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 49-62. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a3/

[1] K. Takahashi, S. N. Arjunan, M. Tomita, “Space in systems biology of signaling pathways — towards intracellular molecular crowding in silico”, FEBS Lett., 579:8 (2005), 1783–1788 | DOI

[2] U. F. Greber, M. Way, “A superhighway to virus infection”, Cell, 124:4 (2006), 741–754 | DOI

[3] T. Hirase, K. Node, “Endothelial dysfunction as a cellular mechanism for vascular failure”, Am. J. Physiol. Heart Circ. Physiol., 303:8 (2012), 499–505

[4] E. A. Perez, “Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mecha-nisms of action, clinical activity, and resistance”, Molecular cancer therapeutics, 8:8 (2009), 2086–2095 | DOI

[5] J. Avila, J. J. Lucas, M. Perez, F. Hernandez, “Role of tau protein in both physiological and pathological conditions”, Physiol. Rev., 84:2 (2004), 361–384 | DOI

[6] I. Vorobjev, V. Malikov, V. Rodionov, “Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules”, Proceedings of the National Academy of Sciences of the United States of America, 98:18 (2001), 10160–10165 | DOI

[7] V. Rodionov, E. N. Cytrynbaum, A. Mogilner, “Computational model of dynein dependent self-organization of microtubule asters”, Journal of Cell Science, 117:8 (2004), 1381–1397 | DOI

[8] N. A. Kolchanov, Sistemnaia komputernaia biologiia, Izd-vo SO RAN, Novosibirsk, 2008, 768 pp.

[9] B. N. Kholodenko, “Cell-signalling dynamics in time and space”, Nature reviews. Molecular cell biology, 7:3 (2006), 165–176 | DOI

[10] A. Cangiani, R. Natalini, “A spatial model of cellular molecular trafficking including active transport along microtubules”, Journal of Theoretical Biology, 267:4 (2010), 614–625 | DOI

[11] C. Lemerle, B. Di Ventura, L. Serrano, “Space as the final frontier in stochastic simulations of biological systems”, FEBS letters, 579:8 (2005), 1789–1794 | DOI

[12] A. V. Kuznetsov, “Numerical investigation of axonal cargo rerouting in a dendrite: A three kinetic state model”, International Journal for Numerical Methods in Biomedical Engineering, 29:3 (2013), 428–443 | DOI

[13] M. Tomita, “Whole-cell simulation: a grand challenge of the 21st century”, Trends in biotechnology, 19:6 (2001), 205–210 | DOI

[14] C. Collinet, M. Stöter, C. R. Bradshaw, N. Samusik, J. C. Rink, D. Kenski, B. Habermann, F. Buchholz, R. Henschel, M. S. Mueller, W. E. Nagel, E. Fava, Y. Kalaidzidis, M. Zerial, “Systems survey of endocytosis by multiparametric image analysis”, Nature, 464:7286 (2010), 343–350 | DOI

[15] B. Cui, C. Wu, L. Chen, A. Ramirez, E. L. Bearer, W. P. Li, W. C. Mobley, S. Chu, “One at a time, live tracking of NGF axonal transport using quantum dots”, Proceedings of the National Academy of Sciences of the United States of America, 104:34 (2007), 13666–13671 | DOI

[16] H. Lodish, Molecular Cell Biology, W. H. Freeman, 2007, 1150 pp.

[17] B. Alberts, Molecular biology of the cell, Garland Science, 2002, 1601 pp.

[18] E. Schulze, M. Kirschner, “Dynamic and stable populations of microtubules in cells”, J. Cell Biol., 104:2 (1987), 277–288 | DOI

[19] D. Van Damme, K. Van Poucke, E. Boutant, C. Ritzenthaler, D. Inzé, D. Geelen, “In vivo dynamics and differential microtubule-binding activities of map65 proteins”, Plant Physiology, 136:4 (2004), 3956–3967 | DOI

[20] H. Chen, J. Yang, P. S. Low, J. X. Cheng, “Cholesterol Level Regulates Endosome Mobility via Rab Proteins”, Biophys. J., 94:4 (2007), 1508–1520 | DOI

[21] J. Huotari, A. Helenius, “Endosome maturation”, The EMBO Journal, 30:17 (2011), 3481–3500 | DOI

[22] J. A. Wattis, B. O'Malley, H. Blackburn, L. Pickersgill, J. Panovska, H. M. Byrne, K. G. Jackson, “Mathematical model for low density lipoprotein (ldl) endocytosis by hepatocytes”, Bulletin of Mathematical Biology, 70:8 (2008), 2303–2333 | DOI

[23] R. Paul, R. Wollman, W. T. Silkworth, I. K. Nardi, D. Cimini, A. Mogilner, “Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy”, Proceedings of the National Academy of Sciences of the United States of America, 106:37 (2009), 15708–15713 | DOI

[24] T. E. Holy, S. Leibler, “Dynamic instability of microtubules as an efficient way to search in space”, Proceedings of the National Academy of Sciences of the United States of America, 91:12 (1994), 5682–5685 | DOI

[25] C. B. O'Connell, A. L. Khodjakov, “Cooperative mechanisms of mitotic spindle formation”, Journal of cell science, 120:10 (2007), 1717–1722 | DOI

[26] R. Wollman, E. N. Cytrynbaum, J. T. Jones, T. Meyer, J. M. Scholey, A. Mogilner, “Efficient Chromosome Capture Requires a Bias in the 'Search-and-Capture' Process during Mitotic-Spindle Assembly”, Current Biology, 15:9 (2005), 828–832 | DOI

[27] P. Del Conte-Zerial, L. Brusch, J. C. Rink, C. Collinet, Y. Kalaidzidis, M. Zerial, A. Deutsch, “Membrane identity and GTPase cascades regulated by toggle and cut-out switches”, Mol. Syst. Biol., 4:1 (2008)