Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_3_a2, author = {J. Talwar and R. K. Mohanty}, title = {Spline in tension method for non-linear two point boundary value problems on a geometric mesh}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--48}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a2/} }
TY - JOUR AU - J. Talwar AU - R. K. Mohanty TI - Spline in tension method for non-linear two point boundary value problems on a geometric mesh JO - Matematičeskoe modelirovanie PY - 2015 SP - 33 EP - 48 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a2/ LA - en ID - MM_2015_27_3_a2 ER -
J. Talwar; R. K. Mohanty. Spline in tension method for non-linear two point boundary value problems on a geometric mesh. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a2/
[1] D. J. Fyfe, “The use of cubic splines in the solution of two point boundary value problems”, Comput. J., 12 (1969), 188–192 | DOI
[2] M. K. Jain, T. Aziz, “Spline function approximation for differential equations”, Comput. Methods Appl. Mech. Engrg., 26:2 (1981), 129–143 | DOI
[3] M. K. Jain, T. Aziz, “Cubic spline solution of two-point boundary value problems with significant first derivatives”, Comput. Methods Appl. Mech. Engrg., 39:1 (1983), 83–91 | DOI
[4] M. K. Jain, Numerical solution of differential equations, Second edition, A Halsted Press Book, John Wiley Sons, Inc., New York, 1984
[5] M. M. Chawla, R. Subramanian, “A New Spline method for Singular two point boundary value problems”, Int. J. Comput. Math., 24 (1988), 291–310 | DOI
[6] M. K. Kadalbajoo, R. K. Bawa, “Cubic spline method for a class of non-linear singularly perturbed boundary value problems”, J. Optim. Theory Appl., 76 (1993), 415–428 | DOI
[7] E. A. Al-Said, “Spline methods for solving a system of second order boundary value problems”, Int. J. Comput. Math., 70 (1999), 717–727 | DOI
[8] E. A. Al-Said, “The use of cubic splines in the numerical solution of a system of second order boundary value problem”, Comput. Math. Appl., 42 (2001), 861–869 | DOI
[9] D. J. Evans, “Group explicit methods for solving large linear systems”, Int. J. Comput. Math., 17 (1985), 81–108 | DOI
[10] R. K. Mohanty, J. Talwar, “A combined approach using coupled reduced alternating group explicit (CRAGE) algorithm and sixth order off-step discretization for the solution of two point nonlinear boundary value problem”, Journal of Applied Mathematics and Computation, 219 (2012), 248–259 | DOI
[11] A. Khan, “Parametric cubic spline solution of two point boundary value problems”, Appl. Math. Comput., 154 (2004), 175–182 | DOI
[12] M. Kumar, “Higher order method for singular boundary problems by using spline function”, Appl. Math. Comput., 192 (2007), 175–179 | DOI
[13] H. B. Keller, Numerical Methods for Two Point Boundary Value Problem, Blaisdell Pub. Co., Waltham, MA, 1992
[14] R. K. Mohanty, D. J. Evans, “Highly accurate two parameter CAGE parallel algorithms for non-linear singular two point boundary value problems”, Int. J. Comput. Math., 82 (2005), 433–444 | DOI
[15] D. J. Evans, “Iterative methods for solving non-linear two point boundary value problems”, Int. J. Comput. Math., 72 (1999), 395–401 | DOI
[16] J. H. Ahlberg, J. H. Nilson, E. N. Walsh, The Theory of Splines and Their Applications, Academic Press, San Diego, 1967
[17] E. L. Albasiny, W. D. Hoskins, “Cubic Spline Solutions to Two Point Boundary Value Problems”, Computer Journal, 12 (1969), 151–153 | DOI
[18] M. K. Jain, T. Aziz, “Numerical solution of stiff and convection diffusion equations using adaptive spline function approximation”, Appl. Math. Modelling, 7 (1983), 57–62 | DOI
[19] R. K. Mohanty, J. Talwar, “Compact alternating group explicit method for the cubic spline solution of two point boundary value problems with significant nonlinear first derivative terms”, Mathematical Sciences, 6:58 (2012)
[20] M. M. Chawla, R. Subramanian, “A New Fourth Order Cubic Spline Method for Nonlinear Two point Boundary Value Problems”, Inter. J. Computer Math., 22 (1987), 321–341 | DOI
[21] R. K. Mohanty, “A Family of Variable Mesh Methods for the Estimates of (du/dr) and the Solution of Non-linear Two Point Boundary Value Problems with Singularity”, J. Comput. Appl. Math., 182 (2005), 173–187 | DOI
[22] M. K. Kadalbajoo, K. C. Patidar, “Tension spline for the numerical solution of singularly perturbed non-linear boundary value problems”, Comput. Appl. Math., 21:3 (2002), 717–742
[23] M. K. Kadalbajoo, K. C. Patidar, “Tension spline for the solution of self-adjoint singular perturbation problems”, Int. J. Comput. Math., 79:7 (2002), 849–865 | DOI
[24] R. K. Mohanty, D. J. Evans, U. Arora, “Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems”, Int. J. Comput. Math., 82:1 (2005), 55–66 | DOI
[25] R. K. Mohanty, U. Arora, “A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives”, Appl. Math. Comput., 172:2 (2006), 531–554 | DOI
[26] M. Marusic, “A fourth/second order accurate collocation method for singularly perturbed two-point boundary value problems using tension splines”, Numer. Math., 88:1 (2001), 135–158 | DOI
[27] I. Khan, T. Aziz, “Tension spline method for second-order singularly perturbed boundary-value problems”, Int. J. Comput. Math., 82:12 (2005), 1547–1553 | DOI
[28] R. K. Mohanty, V. Gopal, “A fourth order finite difference method based on spline in tension approximation for the solution of one-space dimensional second order quasi-linear hyperbolic equations”, Advances in Difference Equations, 70 (2013)
[29] J. Rashidinia, R. Mohammadi, “Tension spline approach for the numerical solution of nonlinear Klein–Gordon equation”, Comput. Phys. Comm., 181:1 (2010), 78–91 | DOI
[30] J. Rashidinia, R. Mohammadi, “Tension spline solution of non-linear sine-Gordon equation”, Numer. Algorithms, 56:1 (2011), 129–142 | DOI