Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_3_a0, author = {V. O. Podryga and S. V. Polyakov}, title = {Molecular dynamic simulation of thermodynamic equilibrium for nickel system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/} }
TY - JOUR AU - V. O. Podryga AU - S. V. Polyakov TI - Molecular dynamic simulation of thermodynamic equilibrium for nickel system JO - Matematičeskoe modelirovanie PY - 2015 SP - 3 EP - 19 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/ LA - ru ID - MM_2015_27_3_a0 ER -
V. O. Podryga; S. V. Polyakov. Molecular dynamic simulation of thermodynamic equilibrium for nickel system. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/
[1] I. G. Kaplan, Vvedenie v teoriiu mezhmolekulyarnykh vzaimodeistvii, Nauka, M., 1982, 312 pp.
[2] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, N.Y., 1981, 540 pp.
[3] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons, Inc., New-York, 1992, 489 pp.
[4] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, New-York, 2002, 638 pp.
[5] M. P. Allen, “Introduction to Molecular Dynamics Simulation”, Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, 23, John von Neumann Institute for Computing, Julich, 2004, 1–28
[6] G. Sutmann, “Classical molecular dynamics”, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, v. 10, eds. J. Grotendorst et al., NIC, Julich, 2002, 211–254
[7] A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, I. A. Valuev, “Standards for Molecular Dynamics Modeling and Simulation of Relaxation”, Molecular Simulation, 31:14–15 (2005), 1005–1017 | DOI
[8] G. E. Norman, V. V. Stegailov, “Stochastic Theory of the Classical Molecular Dynamics Method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI
[9] V. I. Mazhukin, A. V. Shapranov, “Matematicheskoe modelirovanie protsessov nagreva i plavleniia metallov. Chast I. Model i vychislitelnyi algoritm”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 031, 27 pp.
[10] R. G. Winkler, H. Morawitz, D. Y. Yoon, “Novel Molecular Dynamics Simulations at Constant Pressure”, Mol. Phys., 75 (1992), 669–688 | DOI
[11] Ciccotti G., Hoover W. G. (eds.), Proc. of the International School of Physics “Enrico Fermi” (Varenna, Italy, 1985), North-Holland Physics Publishing, Amsterdam, 1986, 622 pp.
[12] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.
[13] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.
[14] V. O. Podryga, “Modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo metalla”, Matematicheskoe modelirovanie, 23:9 (2011), 3–17
[15] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[16] A. N. Lagarkov, V. M. Sergeev, “Molecular dynamics method in statistical physics”, Sov. Phys. Usp., 21 (1978), 566–588 | DOI | DOI
[17] A. I. Kitaigorodskii, Molekuliarnye kristally, Nauka, M., 1971, 424 pp.
[18] Ch. Kittel, Introduction to solid state physics, Ed. Wiley Sons, N.Y., 1986
[19] G. E. P. Box, M. E. Muller, “A Note on the Generation of Random Normal Deviates”, The Annals of Mathematical Statistics, 29:2 (1958), 610–611 | DOI
[20] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29:12 (1984), 6443–6453 | DOI
[21] X. W. Zhou, R. A. Johnson, H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Phys. Rev. B, 69 (2004), 144113 | DOI
[22] L. D. Landau, E. Teller, “On the theory of sound dispersion”, Physik. Zeits. Sowjetunion, 10 (1936), 34–43
[23] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[24] D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin, 1986, 148 pp.
[25] S. V. Poliakov, Iu. N. Karamzin, O. A. Kosolapov, T. A. Kudriashova, S. A. Sukov, “Gibridnaia superkompiuternaia platforma i razrabotka prilozhenii dlia resheniia zadach mekhaniki sploshnoi sredy setochnymi metodami”, Izvestiia IUFU. Tekhnicheskie nauki, 2012, no. 6(131), 105–115
[26] V. V. Voevodin, Vl. V. Voevodin, Parallelnye vychisleniia, BKXV-Peterburg, SPb., 2004, 608 pp.
[27] Official documentation and manuals on MPI
[28] Official documentation and manuals on OpenMP
[29] CUDA Toolkit Documentation v6.0., , NVIDIA Corporation, Santa Clara, CA, USA, February 2014 http://docs.nvidia.com/cuda#axzz33MvzgFZE
[30] V. O. Podryga, S. V. Poliakov, “Molekuliarno-dinamicheskoe modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo nikelia”, Preprinty IPM im. M. V. Keldysha RAN, 2014, 041, 20 pp.
[31] E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press, Cambridge, 2003, 697 pp.
[32] E. M. Pestriaev, “Testirovanie mnogoiadernykh graficheskikh protsessorov na algoritme molekuliarnoi dinamiki”, Matematicheskoe modelirovanie, 26:1 (2014), 69–82
[33] B. I. Bertiaev, I. I. Reut, “Ob odnom uravnenii sostoianiia i vnutrennem davlenii v metallakh”, Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 12:4 (2010), 70–75