Molecular dynamic simulation of thermodynamic equilibrium for nickel system
Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted molecular dynamic modeling of the thermal impact processes on the metal sample consisting of nickel atoms. For the decision of this problem the continuous mathematical model on the basis of the classical Newton mechanics equations is used, the numerical method using in the basis the Verlet scheme is chosen, the parallel algorithm is offered and its realization within the MPI and OpenMP technologies is executed. By means of the developed parallel program the investigation of thermodynamic equilibrium of nickel atoms system under the conditions of heating a sample to desired temperature was executed. In numerical experiments both optimum parameters of a calculation procedure, and physical parameters of analyzed process are defined. The received numerical results are well corresponding to known theoretical and experimental data.
Keywords: molecular dynamic simulation, nickel, EAM, temperature, thermostat.
@article{MM_2015_27_3_a0,
     author = {V. O. Podryga and S. V. Polyakov},
     title = {Molecular dynamic simulation of thermodynamic equilibrium for nickel system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/}
}
TY  - JOUR
AU  - V. O. Podryga
AU  - S. V. Polyakov
TI  - Molecular dynamic simulation of thermodynamic equilibrium for nickel system
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 19
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/
LA  - ru
ID  - MM_2015_27_3_a0
ER  - 
%0 Journal Article
%A V. O. Podryga
%A S. V. Polyakov
%T Molecular dynamic simulation of thermodynamic equilibrium for nickel system
%J Matematičeskoe modelirovanie
%D 2015
%P 3-19
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/
%G ru
%F MM_2015_27_3_a0
V. O. Podryga; S. V. Polyakov. Molecular dynamic simulation of thermodynamic equilibrium for nickel system. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a0/

[1] I. G. Kaplan, Vvedenie v teoriiu mezhmolekulyarnykh vzaimodeistvii, Nauka, M., 1982, 312 pp.

[2] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, N.Y., 1981, 540 pp.

[3] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons, Inc., New-York, 1992, 489 pp.

[4] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, New-York, 2002, 638 pp.

[5] M. P. Allen, “Introduction to Molecular Dynamics Simulation”, Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, 23, John von Neumann Institute for Computing, Julich, 2004, 1–28

[6] G. Sutmann, “Classical molecular dynamics”, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, v. 10, eds. J. Grotendorst et al., NIC, Julich, 2002, 211–254

[7] A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, I. A. Valuev, “Standards for Molecular Dynamics Modeling and Simulation of Relaxation”, Molecular Simulation, 31:14–15 (2005), 1005–1017 | DOI

[8] G. E. Norman, V. V. Stegailov, “Stochastic Theory of the Classical Molecular Dynamics Method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI

[9] V. I. Mazhukin, A. V. Shapranov, “Matematicheskoe modelirovanie protsessov nagreva i plavleniia metallov. Chast I. Model i vychislitelnyi algoritm”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 031, 27 pp.

[10] R. G. Winkler, H. Morawitz, D. Y. Yoon, “Novel Molecular Dynamics Simulations at Constant Pressure”, Mol. Phys., 75 (1992), 669–688 | DOI

[11] Ciccotti G., Hoover W. G. (eds.), Proc. of the International School of Physics “Enrico Fermi” (Varenna, Italy, 1985), North-Holland Physics Publishing, Amsterdam, 1986, 622 pp.

[12] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.

[13] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.

[14] V. O. Podryga, “Modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo metalla”, Matematicheskoe modelirovanie, 23:9 (2011), 3–17

[15] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[16] A. N. Lagarkov, V. M. Sergeev, “Molecular dynamics method in statistical physics”, Sov. Phys. Usp., 21 (1978), 566–588 | DOI | DOI

[17] A. I. Kitaigorodskii, Molekuliarnye kristally, Nauka, M., 1971, 424 pp.

[18] Ch. Kittel, Introduction to solid state physics, Ed. Wiley Sons, N.Y., 1986

[19] G. E. P. Box, M. E. Muller, “A Note on the Generation of Random Normal Deviates”, The Annals of Mathematical Statistics, 29:2 (1958), 610–611 | DOI

[20] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, 29:12 (1984), 6443–6453 | DOI

[21] X. W. Zhou, R. A. Johnson, H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Phys. Rev. B, 69 (2004), 144113 | DOI

[22] L. D. Landau, E. Teller, “On the theory of sound dispersion”, Physik. Zeits. Sowjetunion, 10 (1936), 34–43

[23] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI

[24] D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin, 1986, 148 pp.

[25] S. V. Poliakov, Iu. N. Karamzin, O. A. Kosolapov, T. A. Kudriashova, S. A. Sukov, “Gibridnaia superkompiuternaia platforma i razrabotka prilozhenii dlia resheniia zadach mekhaniki sploshnoi sredy setochnymi metodami”, Izvestiia IUFU. Tekhnicheskie nauki, 2012, no. 6(131), 105–115

[26] V. V. Voevodin, Vl. V. Voevodin, Parallelnye vychisleniia, BKXV-Peterburg, SPb., 2004, 608 pp.

[27] Official documentation and manuals on MPI

[28] Official documentation and manuals on OpenMP

[29] CUDA Toolkit Documentation v6.0., , NVIDIA Corporation, Santa Clara, CA, USA, February 2014 http://docs.nvidia.com/cuda#axzz33MvzgFZE

[30] V. O. Podryga, S. V. Poliakov, “Molekuliarno-dinamicheskoe modelirovanie protsessa ustanovleniia termodinamicheskogo ravnovesiia nagretogo nikelia”, Preprinty IPM im. M. V. Keldysha RAN, 2014, 041, 20 pp.

[31] E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press, Cambridge, 2003, 697 pp.

[32] E. M. Pestriaev, “Testirovanie mnogoiadernykh graficheskikh protsessorov na algoritme molekuliarnoi dinamiki”, Matematicheskoe modelirovanie, 26:1 (2014), 69–82

[33] B. I. Bertiaev, I. I. Reut, “Ob odnom uravnenii sostoianiia i vnutrennem davlenii v metallakh”, Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 12:4 (2010), 70–75