Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_2_a8, author = {N. A. Mikhailov}, title = {On convergence rate of {WENO} schemes behind a shock front}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--138}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/} }
N. A. Mikhailov. On convergence rate of WENO schemes behind a shock front. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 129-138. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/
[1] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19 (1998), 813–828 | DOI
[2] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 34 (1998), 2464–2485 | DOI
[3] V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comput. Math. Math. Phys., 37:10 (1997), 1161–1172
[4] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., Providence, 1983
[5] V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Comput. Math. Math. Phys., 38:8 (1998), 1299–1311
[6] V. V. Ostapenko, “On convergence of high order shock capturing difference schemes”, AIP Conf. Proc., 1301 (2010), 413–425 | DOI
[7] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE Report, No 97-65, 1997
[8] N. K. Yamaleev, M. H. Carpenter, “A systematic methodology for constructing high-order energy stable WENO schemes”, J. of Computational Physics, 228 (2009), 4248–4272 | DOI
[9] R. Borgers, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. of Computational Physics, 227 (2008), 3191–3211 | DOI
[10] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Heidelberg, 2009
[11] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability preserving high-order time discretization methods”, SIAM Review, 43 (2001), 89–112 | DOI
[12] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800
[13] Gottlieb S., Gottlieb D., Shu C.-W., “Recovering high-order accuracy in WENO compuatations of steady-state hyperbolic systems”, J. of Scientific Computing, 28 (2006), 307–318 | DOI