On convergence rate of WENO schemes behind a shock front
Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical analysis has shown that high order finite-volume WENO schemes have only the first order of convergence in the smooth part of weak solution behind a shock front. The order of integral convergence of difference solution is found to estimate accuracy of translation of Rankine–Hugoniot conditions through the shock.
Keywords: finite-volume WENO schemes, Rankine–Hugoniot conditions, integral convergence, order of convergence.
@article{MM_2015_27_2_a8,
     author = {N. A. Mikhailov},
     title = {On convergence rate of {WENO} schemes behind a shock front},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/}
}
TY  - JOUR
AU  - N. A. Mikhailov
TI  - On convergence rate of WENO schemes behind a shock front
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 129
EP  - 138
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/
LA  - ru
ID  - MM_2015_27_2_a8
ER  - 
%0 Journal Article
%A N. A. Mikhailov
%T On convergence rate of WENO schemes behind a shock front
%J Matematičeskoe modelirovanie
%D 2015
%P 129-138
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/
%G ru
%F MM_2015_27_2_a8
N. A. Mikhailov. On convergence rate of WENO schemes behind a shock front. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 129-138. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a8/

[1] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19 (1998), 813–828 | DOI

[2] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 34 (1998), 2464–2485 | DOI

[3] V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comput. Math. Math. Phys., 37:10 (1997), 1161–1172

[4] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., Providence, 1983

[5] V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Comput. Math. Math. Phys., 38:8 (1998), 1299–1311

[6] V. V. Ostapenko, “On convergence of high order shock capturing difference schemes”, AIP Conf. Proc., 1301 (2010), 413–425 | DOI

[7] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE Report, No 97-65, 1997

[8] N. K. Yamaleev, M. H. Carpenter, “A systematic methodology for constructing high-order energy stable WENO schemes”, J. of Computational Physics, 228 (2009), 4248–4272 | DOI

[9] R. Borgers, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. of Computational Physics, 227 (2008), 3191–3211 | DOI

[10] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Heidelberg, 2009

[11] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability preserving high-order time discretization methods”, SIAM Review, 43 (2001), 89–112 | DOI

[12] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800

[13] Gottlieb S., Gottlieb D., Shu C.-W., “Recovering high-order accuracy in WENO compuatations of steady-state hyperbolic systems”, J. of Scientific Computing, 28 (2006), 307–318 | DOI