Computational technology for optimal automatic design of aerodynamic shapes
Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 96-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

A computational technology for optimal automatic design of aerodynamic shapes, developed by the authors, is described and applied to multi-point design of an industrial aircraft configuration. The optimization, which is driven by a multi-constrained genetic algorithm, employs high-accuracy viscous compressible Navier-Stokes solutions in combination with Reduced-Order-Models. The method features novel approaches to constraint handling and multi-level parallelization on distributed multi-processors which allow for realistic turn-around times. The method was applied to practical design of a wing-body configuration optimized for minimum drag at given lift subject to multiple aerodynamic and geometric constraints. The presented results indicate the applicability of the method to practical aircraft design due to its accuracy, robustness and computational efficiency.
Keywords: Navier–Stokes equations, global search methods, multi-level strategy of parallel computations, optimal aerodynamic design.
@article{MM_2015_27_2_a6,
     author = {S. Peigin and B. Epshtein and E. Shrager},
     title = {Computational technology for optimal automatic design of aerodynamic shapes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--114},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a6/}
}
TY  - JOUR
AU  - S. Peigin
AU  - B. Epshtein
AU  - E. Shrager
TI  - Computational technology for optimal automatic design of aerodynamic shapes
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 96
EP  - 114
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_2_a6/
LA  - ru
ID  - MM_2015_27_2_a6
ER  - 
%0 Journal Article
%A S. Peigin
%A B. Epshtein
%A E. Shrager
%T Computational technology for optimal automatic design of aerodynamic shapes
%J Matematičeskoe modelirovanie
%D 2015
%P 96-114
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_2_a6/
%G ru
%F MM_2015_27_2_a6
S. Peigin; B. Epshtein; E. Shrager. Computational technology for optimal automatic design of aerodynamic shapes. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 96-114. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a6/

[1] S. Obayashi, Y. Yamaguchi, T. Nakamura, “Multiobjective Genetic Algorithm for Multidisciplinary Design of Transonic Wing Planform”, Journal of Aircraft, 39 (1997), 690–693 | DOI

[2] A. Vicini, D. Quagliarella, “Inverse and Direct Airfoil Design Using a Multiobjective Genetic Algorithm”, AIAA Journal, 35:9 (1997), 1499–1505 | DOI

[3] B. Mohammadi, O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, Oxford, 2001

[4] S. K. Nadarajah, A. Jameson, Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization, AIAA Paper 2001-2530, June 2001

[5] J. Vassberg, A. Jameson, Aerodynamic Shape Optimization, v. 1, Lecture Series: Introduction to Optimization and Multidisciplinary Design, Theoretical Background, Von Karman Institute for Fluid Dynamics, Brussels, 2006

[6] J. Vassberg, A. Jameson, Aerodynamic Shape Optimization, v. 2, Lecture Series: Introduction to Optimization and Multidisciplinary Design, Sample Applications, Von Karman Institute for Fluid Dynamics, Brussels, 2006

[7] D. W. Zingg, M. Nemec, T. Y. Pullia, “A Comparative Evaluation of Genetic and Gradient-Based Algorithms Applied to Aerodynamic Optimization”, Europ. J. of Comp. Mech., 17 (2008), 103–126

[8] A. Jameson, L. Martinelli, J. Vassberg, Using Computational Fluid Dynamics for Aerodynamics — A Critical Assessment, ICAS Paper 2002-1.10.1, Toronto, 2002

[9] B. Epstein, S. Peigin, “Robust Hybrid Approach to Multiobjective Constarined Optimization in Aerodynamics”, AIAA Journal, 42 (2004), 1572–1581 | DOI

[10] B. Epstein, S. Peigin, “Computational Fluid Dynamics driven optimization of blended wing body aircraft”, AIAA Journal, 44 (2006), 2736–2745 | DOI

[11] S. Peigin, B. Epstein, “Multipoint Aerodynamic Design of Wing-Body Configurations for Minimum Drag”, AIAA J. of Aircraft, 44 (2007), 971–979 | DOI

[12] S. Peigin, B. Epstein, “Embedded parallelization approach for optimization in aerodynamic design”, The Journal of Supercomputing, 29 (2004), 243–263 | DOI

[13] S. Peigin, B. Epstein, “Robust Handling of Non-Linear Constraints for GA Optimization of Aerodynamic Shapes”, Int. J. Numer. Meth. Fluids, 45 (2004), 1339–1362 | DOI

[14] B. Epstein, S. Peigin, “Constrained Aerodynamic Optimization of Three-Dimensional Wings Driven by Navier–Stokes Computations”, AIAA Journal, 43 (2005), 1946–1957 | DOI

[15] B. Epstein, S. Peigin, “Accurate CFD driven optimization of lifting surfaces for wing-body configurations”, Comp. Fluids (An International Journal), 36:9 (2007), 1399–1510 | DOI

[16] C. Popovich, N. Shapiro, B. Epstein, S. Peigin, “Massively Parallel Industry-Strength Design of Aerodynamic Wings”, Procedia Engineering, 61, Elsevier, 2013, 292–297 | DOI

[17] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1 edition, Addison-Wesley Professional, 1989

[18] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer, 2011

[19] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49:2 (1983), 357–393 | DOI

[20] A. Harten, B. Engquist, S. Osher, S. Chakravarthy, “Uniformly High Order Accurate Essentially Non-oscillatory Schemes III”, J. Comp. Phys., 71:2 (1987), 231–303 | DOI

[21] S. Osher, C.-W. Shu, “ENO and WENO shock capturing schemes II”, J. of Comp. Physics, 83 (1989), 32–78 | DOI

[22] R. P. Fedorenko, “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, ZhVM I MF, 4 (1964), 227–235

[23] A. Brandt, “Multi-level Adaptive Solutions to Boundary-Value Problems”, Math. Comp., 31:138 (1977), 333–390 | DOI

[24] B. Epstein, A. Averbuch, I. Yavneh, “An accurate ENO driven Multigrid Method Applied to 3D Turbulent Transonic Flows”, J. of Comp. Physics, 168 (2001), 316–328 | DOI

[25] B. Epstein, A. Jameson, N. Harrison, S. Peigin, D. Roman, J. Vassberg, “Comparative study of 3D wing drag minimization by different optimization techniques”, J. of Aircraft, 46:2 (2009) ; AIAA Paper 2008-326 | DOI

[26] J. Vassberg, A. Jameson, S. Peigin, B. Epstein, D. Roman, N. Harrison, “A Pilot Project in Preparation of an Aerodynamic Optimization Workshop with Lessons Learned”, 26th AIAA Applied Aerodynamics Conference (Honolulu, HI, August, 18–21, 2008), AIAA Paper 2008-6226