Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_2_a3, author = {V. A. Frost}, title = {The reaction zone in the turbulent reactive fluid}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {63--73}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/} }
V. A. Frost. The reaction zone in the turbulent reactive fluid. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/
[1] V. Frost, “The Model of Turbulent Diffusion Flame”, Applied Energy, 1973, no. 6
[2] N. I. Akatnov, E. N. Bystrova, “Raschety nekotorykh kharakteristik odnorodnoi turbulentnosti na osnove uravneniia Karmana–Khovarta, zamknutogo posredstvom poluempiricheskoi modeli”, Teplofizika vysokikh temperatur, 37:6 (1999), 895–903
[3] V. P. Krasitskii, V. A. Frost, “Molecular Transfer in Turbulent Flows”, Fluid Dynamics, 42:2 (2007), 190–200 | DOI
[4] J. O. Hinze, Turbulence. An Introduction to the Mechanism and Theory, McGrew-Hill, N.Y., 1959
[5] V. A. Frost, Uravnenie dlia korreliatsionnoi funktsii skaliara i raschet turbulentnykh chisel Shmidta i Shervuda, preprint No 856, In-t problem mekhaniki, M., 2008, 24 pp.
[6] R. W. Stewart, A. A. Townsend, “Similarity and self-preservation in isotropic turbulence”, Phil. Trans. of the Royal Soc., ser. A, 243:867 (1951), 359–386 | DOI
[7] V. A. Babenko, V. A. Frost, “Approximation of the Third Two-Point Moments of the Velocity Fields in Isotropic Turbulence”, Fluid Dynamics, 47:6 (2012), 735–747 | DOI
[8] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniia diffuzii, soedinennoi s vozrastaniem kolichestva veshchestva, i ego primenenie k odnoi biologicheskoi probleme”, Biulleten MGU, ser. Matematika i mekhanika, 1 (1937), 1–26
[9] V. A. Babenko, V. A. Frost, Konservativnaia raznostnaia skhema dlia uravnenii Karmana–Khovarta i Korsina, preprint No 909, In-t problem mekhaniki, M., 2009, 18 pp.