The reaction zone in the turbulent reactive fluid
Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 63-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation for correlation function of a scalar field, closed by suggested relation between the third and the second order two-point moments, is used for calculating the evolution of spherical volume of a passive reactive scalar. Correlations are described by the Corrsin equation with additional terms arising due to non-homogeneity and reactivity of scalar field. Together with the equation for the correlations, the equation for the probability density distribution of a passive scalar was needed for the mean chemical reaction rate calculation is used. The feature of this approach is the separation of influences imposed to micromixing by turbulent velocity and molecular transfer. The compatible calculation equations were used enables one to determine the evolution of the turbulent diffusivity, and the scalar dissipation, and the reaction wave rate regularities.
Mots-clés : turbulence, turbulent combustion.
Keywords: correlation function, two-point third moments, Corrsin equation, micromixing
@article{MM_2015_27_2_a3,
     author = {V. A. Frost},
     title = {The reaction zone in the turbulent reactive fluid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/}
}
TY  - JOUR
AU  - V. A. Frost
TI  - The reaction zone in the turbulent reactive fluid
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 63
EP  - 73
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/
LA  - ru
ID  - MM_2015_27_2_a3
ER  - 
%0 Journal Article
%A V. A. Frost
%T The reaction zone in the turbulent reactive fluid
%J Matematičeskoe modelirovanie
%D 2015
%P 63-73
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/
%G ru
%F MM_2015_27_2_a3
V. A. Frost. The reaction zone in the turbulent reactive fluid. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 63-73. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a3/

[1] V. Frost, “The Model of Turbulent Diffusion Flame”, Applied Energy, 1973, no. 6

[2] N. I. Akatnov, E. N. Bystrova, “Raschety nekotorykh kharakteristik odnorodnoi turbulentnosti na osnove uravneniia Karmana–Khovarta, zamknutogo posredstvom poluempiricheskoi modeli”, Teplofizika vysokikh temperatur, 37:6 (1999), 895–903

[3] V. P. Krasitskii, V. A. Frost, “Molecular Transfer in Turbulent Flows”, Fluid Dynamics, 42:2 (2007), 190–200 | DOI

[4] J. O. Hinze, Turbulence. An Introduction to the Mechanism and Theory, McGrew-Hill, N.Y., 1959

[5] V. A. Frost, Uravnenie dlia korreliatsionnoi funktsii skaliara i raschet turbulentnykh chisel Shmidta i Shervuda, preprint No 856, In-t problem mekhaniki, M., 2008, 24 pp.

[6] R. W. Stewart, A. A. Townsend, “Similarity and self-preservation in isotropic turbulence”, Phil. Trans. of the Royal Soc., ser. A, 243:867 (1951), 359–386 | DOI

[7] V. A. Babenko, V. A. Frost, “Approximation of the Third Two-Point Moments of the Velocity Fields in Isotropic Turbulence”, Fluid Dynamics, 47:6 (2012), 735–747 | DOI

[8] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniia diffuzii, soedinennoi s vozrastaniem kolichestva veshchestva, i ego primenenie k odnoi biologicheskoi probleme”, Biulleten MGU, ser. Matematika i mekhanika, 1 (1937), 1–26

[9] V. A. Babenko, V. A. Frost, Konservativnaia raznostnaia skhema dlia uravnenii Karmana–Khovarta i Korsina, preprint No 909, In-t problem mekhaniki, M., 2009, 18 pp.