Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations
Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 113-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

Development of BIEM (boundary integral equation method) for solving of nonlinear 3D problems of thermal elastic-plastic deformation and fracture of heterogeneous complex shapes bodies with changing boundary conditions in the process of loading is proposed. Collocation approximation to the solution of equations is based on the fundamental solution of the Kelvin–Somalian and flow theory of elastoplastic media with anisotropic hardening. The cases of complex, composite thermo-mechanical loading of piecewise homogeneous media, including in the presence of local zones of singular perturbation solutions — randomly oriented defects such as cracks are considered. Solutions for practical importance of 3D nonlinear problems are obtained using a previously developed method of discrete domains (DDBIEM).
Keywords: inhomogeneous 3D media, nonlinear deformation and fracture, collocation approximation, mathematical modeling.
Mots-clés : BIEM, subdomains method
@article{MM_2015_27_1_a7,
     author = {V. A. Petushkov},
     title = {Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--130},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/}
}
TY  - JOUR
AU  - V. A. Petushkov
TI  - Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 113
EP  - 130
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/
LA  - ru
ID  - MM_2015_27_1_a7
ER  - 
%0 Journal Article
%A V. A. Petushkov
%T Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations
%J Matematičeskoe modelirovanie
%D 2015
%P 113-130
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/
%G ru
%F MM_2015_27_1_a7
V. A. Petushkov. Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 113-130. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/

[1] Y. J. Liu, S. Mukherjee, N. Nishimura, M. Schanz at all, “Recent Advances and Emerging Applications of the Boundary Element Method”, Appl. Mech. Rev., 64 (2012), 38 pp. | DOI

[2] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, 1965, 259 pp.

[3] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland, Amsterdam, 1979, 929 pp.

[4] J. C. Lachat, J. O. Watson, “Effective numerical treatment of boundary integral equations: A formulation for three-dimensional electrostatics”, Int. J. Numer. Methods Eng., 10 (1976), 991–1005 | DOI

[5] W. Hackbusch, S. A. Sauter, “On numerical cubature of nearly singular surface integrals arising in BEM collocation”, Computing, 52 (1994), 139–159 | DOI

[6] M. Koizumi, M. Utamura, “A new approach to singular kernel integration for general curved elements”, Boundary Elements VIII, Proc. 8th Int. Conf. (Tokyo, Springer-Verlag, 1986), 665–675

[7] V. A. Petushkov, “Chislennaja realizacija metoda granichnyh integral'nyh uravnenij primenitel'no k nelinejnym zadacham mehaniki deformirovanija i razrushenija ob'emnyh tel”, Sb. nauchnyh trudov ITPM SO AN SSSR, Modelirovanie v mehanike, 3(20), no. 1, Novosibirsk, 1989, 133–156

[8] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Springer, Heidelberg, 2007, 279 pp.

[9] N. A. Makhutov, V. A. Petushkov, V. I. Zysin, “Using the method of boundary integral equations for the numerical solution of volume problems of nonlinear fracture mechanics”, Strength of Materials, 20:7 (1988), 833–841 | DOI

[10] V. A. Petushkov, V. I. Zysin, “Paket prikladnyh programm MEGRJe-3D dlja chislennogo modelirovanija nelinejnyh processov deformirovanija i razrushenija ob'emnyh tel. Algoritmy i realizacija v OS ES”, Pakety prikladnyh programm: Programmnoe obespechenie matematicheskogo modelirovanija, Nauka, M., 1992, 111–126

[11] G. C. Hsiao, O. Steinbach, W. L. Wendland, “Domain decomposition methods via boundary integral equations”, J. of Computational and Applied Mathematics, 125 (2000), 521–537 | DOI

[12] V. A. Petushkov, R. M. Shneiderovich, “Thermoelasticplastic deformation of corrugated shells of revolution at finite displacements”, Strength of Materials, 11:6 (1979), 578–585 | DOI

[13] W. L. Wendland, “On Some Mathematical Aspects of Boundary Element Methods for Elliptic Problems”, The mathematics of finite elements and applications V, ed. Whiteman J. R., Acad. Press Inc., New York, 1985, 193–227 | DOI

[14] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI

[15] G. Strang, G. Fix, An Analysis of the Finite Element Method, 2nd edition, Wellesley-Cambridge Press, Wellesley, MA, 2008, 400 pp.

[16] J. M. Crotty, “A block equation solver for large asymmetric matrices arising in the boundary integral equation method”, Intern. J. Numer. Meth. Eng., 18 (1982), 997–1017 | DOI

[17] V. A. Petushkov, A. F. Anikin, “Investigation of the fracture of three-dimensional elastic bodies with cracks”, Intern. Appl. Mech., 22 (1986), 815–822

[18] V. A. Petushkov, A. F. Anikin, ““SAPR-82” software package and the computational aspects of the computer modeling of three-dimensional deformation and failure processes of structures at elevated temperatures”, Strength of Materials, 19 (1987), 944–951 | DOI

[19] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008, 618 pp.

[20] I. S. Raju, J. C. Newman, “Stress-intensity factors for a vide range of semi-elliptical surface cracks in finite-thickness plate”, Engn. Fracture Mech., 11:4 (1979), 817–829 | DOI

[21] E. A. Azizov, Yu. A. Alekseev, N. N. Brevnov at all., “The main physical and engineering problems in creating a tokamak with a strong magnetic field and adiabatic compression of the plasma”, Atomic Energy, 52 (1982), 112–117 | DOI