Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_1_a7, author = {V. A. Petushkov}, title = {Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--130}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/} }
TY - JOUR AU - V. A. Petushkov TI - Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations JO - Matematičeskoe modelirovanie PY - 2015 SP - 113 EP - 130 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/ LA - ru ID - MM_2015_27_1_a7 ER -
%0 Journal Article %A V. A. Petushkov %T Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations %J Matematičeskoe modelirovanie %D 2015 %P 113-130 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/ %G ru %F MM_2015_27_1_a7
V. A. Petushkov. Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 113-130. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a7/
[1] Y. J. Liu, S. Mukherjee, N. Nishimura, M. Schanz at all, “Recent Advances and Emerging Applications of the Boundary Element Method”, Appl. Mech. Rev., 64 (2012), 38 pp. | DOI
[2] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, 1965, 259 pp.
[3] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland, Amsterdam, 1979, 929 pp.
[4] J. C. Lachat, J. O. Watson, “Effective numerical treatment of boundary integral equations: A formulation for three-dimensional electrostatics”, Int. J. Numer. Methods Eng., 10 (1976), 991–1005 | DOI
[5] W. Hackbusch, S. A. Sauter, “On numerical cubature of nearly singular surface integrals arising in BEM collocation”, Computing, 52 (1994), 139–159 | DOI
[6] M. Koizumi, M. Utamura, “A new approach to singular kernel integration for general curved elements”, Boundary Elements VIII, Proc. 8th Int. Conf. (Tokyo, Springer-Verlag, 1986), 665–675
[7] V. A. Petushkov, “Chislennaja realizacija metoda granichnyh integral'nyh uravnenij primenitel'no k nelinejnym zadacham mehaniki deformirovanija i razrushenija ob'emnyh tel”, Sb. nauchnyh trudov ITPM SO AN SSSR, Modelirovanie v mehanike, 3(20), no. 1, Novosibirsk, 1989, 133–156
[8] S. Rjasanow, O. Steinbach, The fast solution of boundary integral equations, Springer, Heidelberg, 2007, 279 pp.
[9] N. A. Makhutov, V. A. Petushkov, V. I. Zysin, “Using the method of boundary integral equations for the numerical solution of volume problems of nonlinear fracture mechanics”, Strength of Materials, 20:7 (1988), 833–841 | DOI
[10] V. A. Petushkov, V. I. Zysin, “Paket prikladnyh programm MEGRJe-3D dlja chislennogo modelirovanija nelinejnyh processov deformirovanija i razrushenija ob'emnyh tel. Algoritmy i realizacija v OS ES”, Pakety prikladnyh programm: Programmnoe obespechenie matematicheskogo modelirovanija, Nauka, M., 1992, 111–126
[11] G. C. Hsiao, O. Steinbach, W. L. Wendland, “Domain decomposition methods via boundary integral equations”, J. of Computational and Applied Mathematics, 125 (2000), 521–537 | DOI
[12] V. A. Petushkov, R. M. Shneiderovich, “Thermoelasticplastic deformation of corrugated shells of revolution at finite displacements”, Strength of Materials, 11:6 (1979), 578–585 | DOI
[13] W. L. Wendland, “On Some Mathematical Aspects of Boundary Element Methods for Elliptic Problems”, The mathematics of finite elements and applications V, ed. Whiteman J. R., Acad. Press Inc., New York, 1985, 193–227 | DOI
[14] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI
[15] G. Strang, G. Fix, An Analysis of the Finite Element Method, 2nd edition, Wellesley-Cambridge Press, Wellesley, MA, 2008, 400 pp.
[16] J. M. Crotty, “A block equation solver for large asymmetric matrices arising in the boundary integral equation method”, Intern. J. Numer. Meth. Eng., 18 (1982), 997–1017 | DOI
[17] V. A. Petushkov, A. F. Anikin, “Investigation of the fracture of three-dimensional elastic bodies with cracks”, Intern. Appl. Mech., 22 (1986), 815–822
[18] V. A. Petushkov, A. F. Anikin, ““SAPR-82” software package and the computational aspects of the computer modeling of three-dimensional deformation and failure processes of structures at elevated temperatures”, Strength of Materials, 19 (1987), 944–951 | DOI
[19] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008, 618 pp.
[20] I. S. Raju, J. C. Newman, “Stress-intensity factors for a vide range of semi-elliptical surface cracks in finite-thickness plate”, Engn. Fracture Mech., 11:4 (1979), 817–829 | DOI
[21] E. A. Azizov, Yu. A. Alekseev, N. N. Brevnov at all., “The main physical and engineering problems in creating a tokamak with a strong magnetic field and adiabatic compression of the plasma”, Atomic Energy, 52 (1982), 112–117 | DOI