Research of discrete-continuous model of adaptive shock device
Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article a discrete-continuous mathematical model of the impactor — hydrohammer for breaking the rocks is discussed. For the solution of the mixed initial-boundary task we used a numeral method which properties are studied for the linear task. The solution of linear task has got by the Fourier method. Comparison of the solutions allows to select parameters of the difference circuits which are optimal for solving of similar problems.
Keywords: percussion device, hydraulic hammer, Fourier series, difference methods, impact loads, solution instability.
Mots-clés : oscillations equations
@article{MM_2015_27_1_a3,
     author = {A. M. Slidenko and V. M. Slidenko},
     title = {Research of discrete-continuous model of adaptive shock device},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a3/}
}
TY  - JOUR
AU  - A. M. Slidenko
AU  - V. M. Slidenko
TI  - Research of discrete-continuous model of adaptive shock device
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 54
EP  - 64
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a3/
LA  - ru
ID  - MM_2015_27_1_a3
ER  - 
%0 Journal Article
%A A. M. Slidenko
%A V. M. Slidenko
%T Research of discrete-continuous model of adaptive shock device
%J Matematičeskoe modelirovanie
%D 2015
%P 54-64
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a3/
%G ru
%F MM_2015_27_1_a3
A. M. Slidenko; V. M. Slidenko. Research of discrete-continuous model of adaptive shock device. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a3/

[1] A. P. Ivanov, Dinamika sistem s mekhanicheskimi soudareniiami, Mezhdunarodnaia programma obrazovaniia, M., 1997, 336 pp.

[2] V. M. Slidenko, S. P. Shevchuk, Stabilizatsiia funktsionuvannia girnychoii mashiny z impulsnym vykonavchim organom, monografiia, NTUU «KPI», K., 2010, 192 pp.

[3] I. G. Aramanovich, V. I. Levin, Uravneniia matematicheskoi fiziki, Nauka, M., 1969, 288 pp.

[4] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp.; A. A. Samarskii, The theory of difference themes, Marcel Dekker, Inc., New York–Basel, 2001, 761 pp.

[5] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 432 pp.

[6] N. S. Koshliakov, E. B. Gliner, M. M. Smirnov, Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaia shkola, M., 1970, 712 pp.