Rigid body motion in a resisting medium modelling and analogues with vortex streets
Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 33-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author returns to construction of nonlinear mathematical model of the planar interaction of a medium to the rigid body was constructed. That model takes into account the dependency of shoulder of force from effective angular velocity of the body (the type of Strouhal number). In this case the moment of force of the interaction itself is also function of the angle of attack. As it has shown for processing the experiment on the motion of the uniform circular cylinders in water, these facts necessary to take into account at modeling. At study of flat model of the interaction of the rigid body with a medium the new cases of full integrability in elementary functions are found that has allowed to find the qualitative analogies between the free moving bodies in a resisting medium and the oscillations of bolted bodies in a jet flow. The comparison of phase patterns obtained under studying of nonlinear model of medium interaction, and the real vortex streets obtained by Karman, is occurred.
Keywords: rigid body, resisting medium, jet flow, full integrability.
@article{MM_2015_27_1_a2,
     author = {M. V. Shamolin},
     title = {Rigid body motion in a resisting medium modelling and analogues with vortex streets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Rigid body motion in a resisting medium modelling and analogues with vortex streets
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 33
EP  - 53
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/
LA  - ru
ID  - MM_2015_27_1_a2
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Rigid body motion in a resisting medium modelling and analogues with vortex streets
%J Matematičeskoe modelirovanie
%D 2015
%P 33-53
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/
%G ru
%F MM_2015_27_1_a2
M. V. Shamolin. Rigid body motion in a resisting medium modelling and analogues with vortex streets. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 33-53. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/

[1] M. V. Shamolin, “On the problem of the motion of a body in a resistant medium”, Moscow University Mechanics Bulletin, 47:1 (1992), 4–10

[2] M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Iz-vo “Ekzamen”, M., 2007, 353 pp.;

[3] V. A. Samsonov, M. V. Shamolin, “Body motion in a resisting medium”, Moscow University Mechanics Bulletin, 44:3 (1989), 16–20

[4] M. V. Shamolin, “Dvizhenie tverdogo tela v soprotivliauishcheisia srede”, Matem. modelirovanie, 23:12 (2011), 79–104

[5] M. I. Gurevich, Teoriia strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp.

[6] S. A. Chaplygin, Izbrannye trudy, Nauka, M., 1976, 495 pp.

[7] S. A. Chaplygin, “O dvizhenii tiazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[8] M. V. Shamolin, “A New Case of Integrability in Spatial Dynamics of a Rigid Solid Interacting with a Medium under Assumption of Linear Damping”, Dokl. Phys., 57:2 (2012), 78–80 | DOI

[9] M. V. Shamolin, “On integrability in transcendental functions”, Russian Math. Surveys, 53:3 (1998), 637–638 | DOI | DOI

[10] M. V. Shamolin, “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915 | DOI

[11] M. V. Shamolin, “New integrable, in the sense of Jacobi, cases in the dynamics of a rigid body interacting with a medium”, Doklady Mathematics, 44:2 (1999), 110–113

[12] M. V. Shamolin, “Introduction to problem on braking of a body in a resisting medium and new two-parametric family of phase portraits”, Moscow University Mechanics Bulletin, 51:4 (1996), 1–9

[13] M. V. Shamolin, “Phase pattern classification for the problem of the motion of a body in a resisting medium in the presence of a linear damping moment”, J. Appl. Math. Mech., 57:4 (1993), 623–632 | DOI

[14] M. V. Shamolin, “Application of the methods of topographic Poincare systems and comparison systems to some particular systems of differential equations”, Moscow University Mechanics Bulletin, 48:2 (1993), 10–15

[15] D. Arrowsmith, C. Place, Ordinary Differential Equations. A Qualitative Approach. With Applications, Springer, London, 1983

[16] A. Puankare, O krivykh, opredeliaemykh differentsialnymi uravneniiami, OGIZ, M.–L., 1947

[17] L. Prandtl, Fuhrer durch die stromungslehre, Berlin, 1944

[18] G. Kirchhoff, “Zur Theorie freier Flüssigkeitsstrahlen”, Crelle's Journ., 70 (1869)

[19] Karman und Rubach, Phys. Zeitschr., 13 (1912)

[20] N. E. Kochin, “O neustoichivosti vikhrevykh tsepochek”, Doklady AN SSSR, XXIV (1939)