Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_1_a2, author = {M. V. Shamolin}, title = {Rigid body motion in a resisting medium modelling and analogues with vortex streets}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--53}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/} }
M. V. Shamolin. Rigid body motion in a resisting medium modelling and analogues with vortex streets. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 33-53. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a2/
[1] M. V. Shamolin, “On the problem of the motion of a body in a resistant medium”, Moscow University Mechanics Bulletin, 47:1 (1992), 4–10
[2] M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Iz-vo “Ekzamen”, M., 2007, 353 pp.;
[3] V. A. Samsonov, M. V. Shamolin, “Body motion in a resisting medium”, Moscow University Mechanics Bulletin, 44:3 (1989), 16–20
[4] M. V. Shamolin, “Dvizhenie tverdogo tela v soprotivliauishcheisia srede”, Matem. modelirovanie, 23:12 (2011), 79–104
[5] M. I. Gurevich, Teoriia strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp.
[6] S. A. Chaplygin, Izbrannye trudy, Nauka, M., 1976, 495 pp.
[7] S. A. Chaplygin, “O dvizhenii tiazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[8] M. V. Shamolin, “A New Case of Integrability in Spatial Dynamics of a Rigid Solid Interacting with a Medium under Assumption of Linear Damping”, Dokl. Phys., 57:2 (2012), 78–80 | DOI
[9] M. V. Shamolin, “On integrability in transcendental functions”, Russian Math. Surveys, 53:3 (1998), 637–638 | DOI | DOI
[10] M. V. Shamolin, “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915 | DOI
[11] M. V. Shamolin, “New integrable, in the sense of Jacobi, cases in the dynamics of a rigid body interacting with a medium”, Doklady Mathematics, 44:2 (1999), 110–113
[12] M. V. Shamolin, “Introduction to problem on braking of a body in a resisting medium and new two-parametric family of phase portraits”, Moscow University Mechanics Bulletin, 51:4 (1996), 1–9
[13] M. V. Shamolin, “Phase pattern classification for the problem of the motion of a body in a resisting medium in the presence of a linear damping moment”, J. Appl. Math. Mech., 57:4 (1993), 623–632 | DOI
[14] M. V. Shamolin, “Application of the methods of topographic Poincare systems and comparison systems to some particular systems of differential equations”, Moscow University Mechanics Bulletin, 48:2 (1993), 10–15
[15] D. Arrowsmith, C. Place, Ordinary Differential Equations. A Qualitative Approach. With Applications, Springer, London, 1983
[16] A. Puankare, O krivykh, opredeliaemykh differentsialnymi uravneniiami, OGIZ, M.–L., 1947
[17] L. Prandtl, Fuhrer durch die stromungslehre, Berlin, 1944
[18] G. Kirchhoff, “Zur Theorie freier Flüssigkeitsstrahlen”, Crelle's Journ., 70 (1869)
[19] Karman und Rubach, Phys. Zeitschr., 13 (1912)
[20] N. E. Kochin, “O neustoichivosti vikhrevykh tsepochek”, Doklady AN SSSR, XXIV (1939)