Reduction of searching competetive equillibrium to the minimax problem in application to different network problems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we show that an important class of multistage traffic equillibrium models (including correspondence matrix calculation, traffic assignment problem etc) and their economic generalizations can be considered as proper population games with the minimax structure of equillibriums. This is not trivial because at the first sight we have to consider competetive (Valras) equilibrium and Nash–Vardroop equillibrium.
Keywords: competitive equilibrium, evolutionary game, sadle point, multi-level optimization, macro balance.
@article{MM_2015_27_12_a8,
     author = {A. V. Gasnikov},
     title = {Reduction of searching competetive equillibrium to the minimax problem in application to different network problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/}
}
TY  - JOUR
AU  - A. V. Gasnikov
TI  - Reduction of searching competetive equillibrium to the minimax problem in application to different network problems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 121
EP  - 136
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/
LA  - ru
ID  - MM_2015_27_12_a8
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%T Reduction of searching competetive equillibrium to the minimax problem in application to different network problems
%J Matematičeskoe modelirovanie
%D 2015
%P 121-136
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/
%G ru
%F MM_2015_27_12_a8
A. V. Gasnikov. Reduction of searching competetive equillibrium to the minimax problem in application to different network problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/

[1] M. P. Vashchenko, A. V. Gasnikov, E. G. Molchanov, L. Ia. Pospelova, A. A. Shananin, Vychislimye modeli i chislennye metody dlia analiza tarifnoi politiki zheleznodorozhnykh gruzoperevozok, VTs RAN, M., 2014

[2] A. V. Gasnikov, Iu. V. Dorn, Iu. E. Nesterov, S. V. Shpirko, “O trekhstadiinoi versii modeli statsionarnoi dinamiki transportnykh potokov”, Matematicheskoe modelirovanie, 26:6 (2014), 34–70 | Zbl

[3] S. Dempe, Foundations of bilevel programming, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[4] S. A. Ashmanov, Vvedenie v matematicheskuiu ekonomiku, Nauka, M., 1984 | MR

[5] K. J. Arrow, M. D. Intriligator (eds.), Handbook of mathematical economics, part 3, v. 2, 1986

[6] C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences, Springer, 2009 | MR | MR | Zbl

[7] A. G. Wilson, Entropy in Urban and Regional Modelling, Routledge, 2011

[8] P. A. Steenbrink, Optimization Of Transport networks, Wiley, 1974

[9] M. Patriksson, The traffic assignment problem. Models and methods, VSP, Utrecht, Netherlands, 1994

[10] A. V. Gasnikov (ed.), Vvedenie v matematicheskoe modelirovanie transportnykh potokov, MTsNMO, M., 2013

[11] W. Sandholm, Population games and Evolutionary dynamics. Economic Learning and Social Evolution, MIT Press, Cambridge, 2010 | MR

[12] Yu. Nesterov, V. Shikhman, Algorithmic models of market equilibrium, CORE DISSCUSSION PAPER 2013/66, 2013

[13] Yu. Nesterov, A. de Palma, “Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives”, Networks Spatial Econ., 3:3 (2003), 371–395 | DOI | MR

[14] L. V. Kantorovich, M. K. Gavurin, “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniia effektivnosti raboty transporta, Izd. AN SSSR, M., 1949, 110–138

[15] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network flows. Theory, algorithms, and applications, Prentice Hall, 1993 | MR | Zbl

[16] J. M. Danskin, The Theory of Max-Min and its Applications to Weapons Allocation Problems, Springer, NY, 1967 | MR

[17] V. F. Demyanov, V. N. Malozemov, Introduction to Minimax, D. Louvish (Translator), Dover Books on Mathematics, Dover Publications, 2014 | MR | MR

[18] S. P. Andersen, A. de Palma, J.-F. Thisse, Discrete choice theory of product differentiation, MIT Press, Cambridge, 1992 | MR

[19] Y. Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, N.J., 1985

[20] M. Sion, “On general minimax theorem”, Pac. J. Math., 8 (1958), 171–176 | DOI | MR | Zbl

[21] A. Nemirovski, “Prox-method with rate of convergence $O(1/T)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems”, SIAM Journal on Optimization, 15 (2004), 229–251 | DOI | MR | Zbl

[22] Yu. Nesterov, “Smooth minimization of non-smooth function”, Math. Program. Ser. A, 103:1 (2005), 127–152 | DOI | MR | Zbl

[23] Yu. Nesterov, “Primal-dual subgradient methods for convex problems”, Math. Program. Ser. B, 120:1 (2009), 261–283 | DOI | MR

[24] Yu. Nesterov, V. Shikhman, Convergent subgradient methods for nonsmooth convex minimization, CORE Discussion Paper 2014/5, 2014

[25] N. Nisan, T. Roughgarden, E. Trados, V. V. Vazirani (eds.), Algorithmic game theory, Cambridge Univ. Press, 2007 http://www.eecs.harvard.edu/cs285/Nisan_Non-printable.pdf | MR | Zbl

[26] W. H. Sandholm, “Evolutionary implementation and congestion pricing”, Review of Economic Studies, 69 (2002), 81–108 | DOI | MR

[27] A. V. Gasnikov, E. V. Gasnikova, “On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverage”, Mat. Zametki, 94:6 (2013), 819–827 | DOI | MR | Zbl

[28] V. Gasnikov, Yu. E. Nesterov, V. G. Spokoiny, “On the Efficiency of a Randomized Mirror Descent Algorithm in Online Optimization Problems”, Computational Mathematics and Mathematical Physics, 55:4 (2015), 580–596 | DOI | MR | Zbl

[29] G. Lugosi, N. Cesa-Bianchi, Prediction, learning and games, Cambridge University Press, New York, 2006 | MR | Zbl