Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_12_a8, author = {A. V. Gasnikov}, title = {Reduction of searching competetive equillibrium to the minimax problem in application to different network problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {121--136}, publisher = {mathdoc}, volume = {27}, number = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/} }
TY - JOUR AU - A. V. Gasnikov TI - Reduction of searching competetive equillibrium to the minimax problem in application to different network problems JO - Matematičeskoe modelirovanie PY - 2015 SP - 121 EP - 136 VL - 27 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/ LA - ru ID - MM_2015_27_12_a8 ER -
%0 Journal Article %A A. V. Gasnikov %T Reduction of searching competetive equillibrium to the minimax problem in application to different network problems %J Matematičeskoe modelirovanie %D 2015 %P 121-136 %V 27 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/ %G ru %F MM_2015_27_12_a8
A. V. Gasnikov. Reduction of searching competetive equillibrium to the minimax problem in application to different network problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a8/
[1] M. P. Vashchenko, A. V. Gasnikov, E. G. Molchanov, L. Ia. Pospelova, A. A. Shananin, Vychislimye modeli i chislennye metody dlia analiza tarifnoi politiki zheleznodorozhnykh gruzoperevozok, VTs RAN, M., 2014
[2] A. V. Gasnikov, Iu. V. Dorn, Iu. E. Nesterov, S. V. Shpirko, “O trekhstadiinoi versii modeli statsionarnoi dinamiki transportnykh potokov”, Matematicheskoe modelirovanie, 26:6 (2014), 34–70 | Zbl
[3] S. Dempe, Foundations of bilevel programming, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[4] S. A. Ashmanov, Vvedenie v matematicheskuiu ekonomiku, Nauka, M., 1984 | MR
[5] K. J. Arrow, M. D. Intriligator (eds.), Handbook of mathematical economics, part 3, v. 2, 1986
[6] C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences, Springer, 2009 | MR | MR | Zbl
[7] A. G. Wilson, Entropy in Urban and Regional Modelling, Routledge, 2011
[8] P. A. Steenbrink, Optimization Of Transport networks, Wiley, 1974
[9] M. Patriksson, The traffic assignment problem. Models and methods, VSP, Utrecht, Netherlands, 1994
[10] A. V. Gasnikov (ed.), Vvedenie v matematicheskoe modelirovanie transportnykh potokov, MTsNMO, M., 2013
[11] W. Sandholm, Population games and Evolutionary dynamics. Economic Learning and Social Evolution, MIT Press, Cambridge, 2010 | MR
[12] Yu. Nesterov, V. Shikhman, Algorithmic models of market equilibrium, CORE DISSCUSSION PAPER 2013/66, 2013
[13] Yu. Nesterov, A. de Palma, “Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives”, Networks Spatial Econ., 3:3 (2003), 371–395 | DOI | MR
[14] L. V. Kantorovich, M. K. Gavurin, “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniia effektivnosti raboty transporta, Izd. AN SSSR, M., 1949, 110–138
[15] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network flows. Theory, algorithms, and applications, Prentice Hall, 1993 | MR | Zbl
[16] J. M. Danskin, The Theory of Max-Min and its Applications to Weapons Allocation Problems, Springer, NY, 1967 | MR
[17] V. F. Demyanov, V. N. Malozemov, Introduction to Minimax, D. Louvish (Translator), Dover Books on Mathematics, Dover Publications, 2014 | MR | MR
[18] S. P. Andersen, A. de Palma, J.-F. Thisse, Discrete choice theory of product differentiation, MIT Press, Cambridge, 1992 | MR
[19] Y. Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, N.J., 1985
[20] M. Sion, “On general minimax theorem”, Pac. J. Math., 8 (1958), 171–176 | DOI | MR | Zbl
[21] A. Nemirovski, “Prox-method with rate of convergence $O(1/T)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems”, SIAM Journal on Optimization, 15 (2004), 229–251 | DOI | MR | Zbl
[22] Yu. Nesterov, “Smooth minimization of non-smooth function”, Math. Program. Ser. A, 103:1 (2005), 127–152 | DOI | MR | Zbl
[23] Yu. Nesterov, “Primal-dual subgradient methods for convex problems”, Math. Program. Ser. B, 120:1 (2009), 261–283 | DOI | MR
[24] Yu. Nesterov, V. Shikhman, Convergent subgradient methods for nonsmooth convex minimization, CORE Discussion Paper 2014/5, 2014
[25] N. Nisan, T. Roughgarden, E. Trados, V. V. Vazirani (eds.), Algorithmic game theory, Cambridge Univ. Press, 2007 http://www.eecs.harvard.edu/cs285/Nisan_Non-printable.pdf | MR | Zbl
[26] W. H. Sandholm, “Evolutionary implementation and congestion pricing”, Review of Economic Studies, 69 (2002), 81–108 | DOI | MR
[27] A. V. Gasnikov, E. V. Gasnikova, “On Entropy-Type Functionals Arising in Stochastic Chemical Kinetics Related to the Concentration of the Invariant Measure and Playing the Role of Lyapunov Functions in the Dynamics of Quasiaverage”, Mat. Zametki, 94:6 (2013), 819–827 | DOI | MR | Zbl
[28] V. Gasnikov, Yu. E. Nesterov, V. G. Spokoiny, “On the Efficiency of a Randomized Mirror Descent Algorithm in Online Optimization Problems”, Computational Mathematics and Mathematical Physics, 55:4 (2015), 580–596 | DOI | MR | Zbl
[29] G. Lugosi, N. Cesa-Bianchi, Prediction, learning and games, Cambridge University Press, New York, 2006 | MR | Zbl