Discrete ray model and technique for laser beam absorption modeling
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a mathematical model of laser radiation absorption in a laser target and describe a corresponding numerical algorithm. The model is developed using a geometrical optics principles. The model application range is extended by taking into account a number of effects that go beyond the geometric optics approximation. To this end we approximate a plasma medium near a "critical density" surface as a set of plane layers. This allows us to construct a simple and sufficiently accurate method for the calculation of laser radiation absorption and reflection processes taking place in the "critical density" region as well as to take into account the dependence of radiation-matter interaction processes on the polarization direction etc. The developed technique is fitted to the radiative-gasdynamics numerical code. It is based on the analytical solution to differential equations corresponding to the optical "ray" model of the laser energy radiation flux. The solution is obtained under the assumption that the squared refractive index gradient has a constant value in any computational mesh cell. The convergence rate of the proposed technique is estimated through numerical experiments.
Keywords: laser radiation, geometrical optic, radiative gasdynamics, numerical algorithms, computer modeling.
@article{MM_2015_27_12_a6,
     author = {I. P. Tsygvintsev and A. Yu. Krukovskiy and V. A. Gasilov and V. G. Novikov and I. V. Popov},
     title = {Discrete ray model and technique for laser beam absorption modeling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a6/}
}
TY  - JOUR
AU  - I. P. Tsygvintsev
AU  - A. Yu. Krukovskiy
AU  - V. A. Gasilov
AU  - V. G. Novikov
AU  - I. V. Popov
TI  - Discrete ray model and technique for laser beam absorption modeling
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 96
EP  - 108
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a6/
LA  - ru
ID  - MM_2015_27_12_a6
ER  - 
%0 Journal Article
%A I. P. Tsygvintsev
%A A. Yu. Krukovskiy
%A V. A. Gasilov
%A V. G. Novikov
%A I. V. Popov
%T Discrete ray model and technique for laser beam absorption modeling
%J Matematičeskoe modelirovanie
%D 2015
%P 96-108
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a6/
%G ru
%F MM_2015_27_12_a6
I. P. Tsygvintsev; A. Yu. Krukovskiy; V. A. Gasilov; V. G. Novikov; I. V. Popov. Discrete ray model and technique for laser beam absorption modeling. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a6/

[1] V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos, Springer, 2011 | Zbl

[2] Sharkov B. Iu. (ed.), Yadernyi sintez s inertsionnym uderzhaniem, Fizmatlit, M., 2009

[3] Panchenko V. Ia. (ed.), Lazernye tekhnologii obrabotki materialov. Sovremennye problemy fundamentalnykh issledovanii i prikladnykh razrabotok, Fizmatlit, M., 2009

[4] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999 | MR

[5] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoiadernogo sinteza, Fizmatlit, M., 2006

[6] Th. B. Kaiser, “Laser ray tracing and power deposition on an unstructured three-dimensional grid”, Phys. Rev. E, 61:1 (2000), 895–905 | DOI

[7] L. Friedland, I. Bernstein, “Comparison of geometric and wave optics in an absorbing spherical plasma”, Phys. Rev. A, 21:2 (1980), 666–671 | DOI | MR

[8] M. E. Povarnitsyn at al., “Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams”, Physics of Plasmas, 19:2 (2012) | DOI

[9] L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, v. 8, Electrodynamics of Continuous Media, Second Edition, Pergamon Press, 1984 | MR

[10] V. L. Ginzburg, A. A. Rukhadze, Volny v magnitoaktivnoi plazme, Nauka, M., 1975 | MR

[11] A. F. Alexandrov, L. S. Bogdankevich, A. A. Rukhadze, Principles of Plasma Electrodynamics, Springer-Verlag, Berlin–Heidelberg–New York–Tokio, 1984 | MR

[12] I. P. Tsygvintsev, A. Yu. Krukovskiy, V. G. Novikov, I. V. Popov, “Trekhmernoe modelirovanie pogloshcheniia lazernogo izlucheniia v priblizhenii geometricheskoi optiki”, Keldysh Institute preprints, 2012, 041, 20 pp.

[13] A. Yu. Krukovskiy, V. G. Novikov, I. P. Tsygvintsev, “Programma 3DLINE: chislennoe modelirovanie trekhmernykh nestatsionarnykh zadach radiatsionnoi gazovoi dinamiki”, Keldysh Institute preprints, 2013, 020, 24 pp.

[14] V. A. Gasilov i dr., “Chislennoe modelirovanie tokoprokhozhdeniia v vakuumnom diode s lazernym podzhigom”, Keldysh Institute preprints, 2013, 078, 20 pp.

[15] V. Bakshi, EUV Sources for Lithography, SPIE Press, Bellingham, WA, 2005

[16] J. Fujimoto, T. Hori, T. Yanagida, H. Mizoguchi, “Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography”, Physics Research International, 2012 (2012), 249495, 11 pp. | DOI

[17] H. Mizoguchi, T. Abe, Y. Watanabe et al., “100W 1st generation laser-produced plasma light source system for HVM EUV lithography”, Extreme Ultraviolet (EUV) Lithography II, Proceedings of SPIE, 7969, 2011

[18] S. I. Anisimov, Ia. A. Imas, G. S. Romanov, Iu. V. Khodyko, Deistvie izlucheniia bolshoi moshchnosti na metally, eds. A. M. Bonch-Bruevich, M. A. Eliashevicha

[19] A. Colaıtis, G. Duchateau, P. Nicola\i, V. Tikhonchuk, “Towards modeling of nonlinear laser-plasma interactions with hydrocodes: The thick-ray approach”, Phys. Rev. E, 89:3 (2014)