Mixed problem in the one-dimensional percolation theory for finite systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 88-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of a one-dimensional mixed problem with use of the theory of counts is viewed at arbitrary radius of a percolation. A new algorithm to determine the percolation threshold of the mixed problem of the one-dimensional percolation theory. The model can be use at interpretation of results in quasi-one-dimensional nanometer systems.
Keywords: percolation theory, bond problem, site problem, mixed problem, theory of counts, cluster, critical exponent of specific heat.
@article{MM_2015_27_12_a5,
     author = {M. G. Usatova and R. A. Kozlitin and V. N. Udodov},
     title = {Mixed problem in the one-dimensional percolation theory for finite systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {88--95},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/}
}
TY  - JOUR
AU  - M. G. Usatova
AU  - R. A. Kozlitin
AU  - V. N. Udodov
TI  - Mixed problem in the one-dimensional percolation theory for finite systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 88
EP  - 95
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/
LA  - ru
ID  - MM_2015_27_12_a5
ER  - 
%0 Journal Article
%A M. G. Usatova
%A R. A. Kozlitin
%A V. N. Udodov
%T Mixed problem in the one-dimensional percolation theory for finite systems
%J Matematičeskoe modelirovanie
%D 2015
%P 88-95
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/
%G ru
%F MM_2015_27_12_a5
M. G. Usatova; R. A. Kozlitin; V. N. Udodov. Mixed problem in the one-dimensional percolation theory for finite systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 88-95. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/

[1] J. Hicks, A. Behnam, A. Ural, “Resistivity in percolation networks of one-dimensional elements with a length distribution”, Phys. Rev. E, 79 (2009), 012102, 4 pp. | DOI

[2] D. V. Spirin, V. N. Udodov, A. I. Potekaev, “Nemagnitnye primesi i percoliatsionnye effekty v odnomernom izingovskom magnetike”, Izvestiia vuzov. Fizika, 2009, no. 9, 145–150

[3] M. A. Bureeva, T. V. Volkova, V. N. Udodov, A. I. Potekaev, “The bond problem in a onedimensional percolation theory for finite systems”, Russian physics journal, 53:2 (2010), 140–147 | DOI | MR

[4] M. A. Bureeva, V. N. Udodov, “Modelirovanie zadachi sviazei odnomernoi teorii percoliatsii na neorientirovannom grafe”, Matematicheskoe modelirovanie, 24:11 (2012), 72–82 | MR

[5] R. A. Kozlitin, V. N. Udodov, M. G. Usatova, “Kriticheskii indeks teploemkosti v smeshannoi zadache dlia odnomernykh sistem”, Modelirovanie neravnovesnykh sistem-2012, Materialy 15-go Vserossiiskogo seminara (5–7 oktiabria 2012 g.), IVM SO RAN, Krasnoiarsk, 79–82

[6] A. A. Popov, V. N. Udodov, A. I. Potekaev, “Special features of polytype transformations under changing external shear stress and temperature”, Russian Physics Journal, 42:9 (1999), 853–859 | DOI

[7] M. V. Martynenko, V. N. Udodov, A. I. Potekaev, “Anomalous diffusion in a model with a variable percolation radius”, Russian Physics Journal, 43:10 (2000), 867–870 | DOI

[8] H. Kesten, Percolation Theory for Mathematicians, Birkhauser, Boston, 1982, 423 pp. | MR | MR | Zbl

[9] G. Grimmet, Percolation, Springer-Verlag, Berlin, 1999, 419 pp. | MR | Zbl

[10] A. L. Efros, Fizika i geometriia besporiadka, Nauka. Glavnaia redaktsiia fiziko-matematicheskoi literatury, M., 1982, 167 pp. | MR

[11] Iu. Iu. Tarasevich, Perkoliatsiia: teoriia, prilozheniia, algoritmy, Editorial URSS, M., 2002, 112 pp.

[12] B. I. Shklovskii, A. L. Efros, Elektronnye svoistva legirovannykh poluprovodnikov, Nauka. Glavnaia redaktsiia fiziko-matematicheskoi literatury, M., 1979, 416 pp.

[13] V. A. Ivanskoi, “Approaches of the Percolation Theory and the Free Energy of Dislocation Clusters”, Technical Physics, 53:4 (2008), 455–461 | DOI | Zbl

[14] V. V. Cherkasova, Iu. Iu. Tarasevich, “Orientirovannaia perkoloatsiia dimerov na prostoi kubicheskoi reshetke”, Matematicheskoe modelirovanie, 21:9 (2009), 100–107 | Zbl

[15] V. E. Arkhincheev, E. M. Baskin, “Anomalous diffusion and drift in a comb model of percolation clusters”, JETP, 73:1 (1991), 161–165

[16] S. R. Galliamov, S. A. Melchukov, “O kriticheskikh indeksakh v trekhmernoi perkoliatsii v zadachakh uzlov i tverdyh sfer”, Vestnik Udmurtskogo universiteta, 2010, no. 2, 67–79

[17] A. B. Harris, “Effect of random defects on the critical behaviour of Ising models”, J. Phys. C, 7:6 (1974), 1671–1692 | DOI

[18] L. D. Landau, E. M. Lifshitz, Theoretical physics, Part 1, v. 5, Statistical physics, 3ed., Pergamon, 1980 | MR