Mixed problem in the one-dimensional percolation theory for finite systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 88-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of a one-dimensional mixed problem with use of the theory of counts is viewed at arbitrary radius of a percolation. A new algorithm to determine the percolation threshold of the mixed problem of the one-dimensional percolation theory. The model can be use at interpretation of results in quasi-one-dimensional nanometer systems.
Keywords: percolation theory, bond problem, site problem, mixed problem, theory of counts, cluster, critical exponent of specific heat.
@article{MM_2015_27_12_a5,
     author = {M. G. Usatova and R. A. Kozlitin and V. N. Udodov},
     title = {Mixed problem in the one-dimensional percolation theory for finite systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {88--95},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/}
}
TY  - JOUR
AU  - M. G. Usatova
AU  - R. A. Kozlitin
AU  - V. N. Udodov
TI  - Mixed problem in the one-dimensional percolation theory for finite systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 88
EP  - 95
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/
LA  - ru
ID  - MM_2015_27_12_a5
ER  - 
%0 Journal Article
%A M. G. Usatova
%A R. A. Kozlitin
%A V. N. Udodov
%T Mixed problem in the one-dimensional percolation theory for finite systems
%J Matematičeskoe modelirovanie
%D 2015
%P 88-95
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/
%G ru
%F MM_2015_27_12_a5
M. G. Usatova; R. A. Kozlitin; V. N. Udodov. Mixed problem in the one-dimensional percolation theory for finite systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 88-95. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a5/