Generalized transport-logistic problem as class of dynamical systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 65-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems on network with discrete set of states and discrete time are considered. Sites, channels and particles are forming an abstract model of mass transport, information and so on, on the one hand, and another, they are forming dynamical system of deterministic or stochastic type. State of the system in the following discrete instant of time $S(T+1)$ is defined by transformation of the state at the moment $S(T)$ with given rules $L$, $S(T+1)=L(S(T))$. In this case, $S(T+1)$ does not necessarily belong to the admissible states set $A$. Then "judicial system" is activated, i.e. operator $P$ such that projects $S(T+1)$ to $A$. Thus, $S(T+1)=\{L(S(T))$, if $L(S(T))$ belongs $A$; $PL(S(T))$, if $L(S(T))$ does not belong $A\}$. Properties of these systems are researched, and applications for transport problems are discussed.
Keywords: discrete dynamical systems, transport-logistic problem
Mots-clés : Markov chains.
@article{MM_2015_27_12_a4,
     author = {A. S. Bugaev and A. P. Buslaev and V. V. Kozlov and A. G. Tatashev and M. V. Yashina},
     title = {Generalized transport-logistic problem as class of dynamical systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/}
}
TY  - JOUR
AU  - A. S. Bugaev
AU  - A. P. Buslaev
AU  - V. V. Kozlov
AU  - A. G. Tatashev
AU  - M. V. Yashina
TI  - Generalized transport-logistic problem as class of dynamical systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 87
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/
LA  - ru
ID  - MM_2015_27_12_a4
ER  - 
%0 Journal Article
%A A. S. Bugaev
%A A. P. Buslaev
%A V. V. Kozlov
%A A. G. Tatashev
%A M. V. Yashina
%T Generalized transport-logistic problem as class of dynamical systems
%J Matematičeskoe modelirovanie
%D 2015
%P 65-87
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/
%G ru
%F MM_2015_27_12_a4
A. S. Bugaev; A. P. Buslaev; V. V. Kozlov; A. G. Tatashev; M. V. Yashina. Generalized transport-logistic problem as class of dynamical systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 65-87. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/