Generalized transport-logistic problem as class of dynamical systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 65-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical systems on network with discrete set of states and discrete time are considered. Sites, channels and particles are forming an abstract model of mass transport, information and so on, on the one hand, and another, they are forming dynamical system of deterministic or stochastic type. State of the system in the following discrete instant of time $S(T+1)$ is defined by transformation of the state at the moment $S(T)$ with given rules $L$, $S(T+1)=L(S(T))$. In this case, $S(T+1)$ does not necessarily belong to the admissible states set $A$. Then "judicial system" is activated, i.e. operator $P$ such that projects $S(T+1)$ to $A$. Thus, $S(T+1)=\{L(S(T))$, if $L(S(T))$ belongs $A$; $PL(S(T))$, if $L(S(T))$ does not belong $A\}$. Properties of these systems are researched, and applications for transport problems are discussed.
Keywords: discrete dynamical systems, transport-logistic problem
Mots-clés : Markov chains.
@article{MM_2015_27_12_a4,
     author = {A. S. Bugaev and A. P. Buslaev and V. V. Kozlov and A. G. Tatashev and M. V. Yashina},
     title = {Generalized transport-logistic problem as class of dynamical systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/}
}
TY  - JOUR
AU  - A. S. Bugaev
AU  - A. P. Buslaev
AU  - V. V. Kozlov
AU  - A. G. Tatashev
AU  - M. V. Yashina
TI  - Generalized transport-logistic problem as class of dynamical systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 87
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/
LA  - ru
ID  - MM_2015_27_12_a4
ER  - 
%0 Journal Article
%A A. S. Bugaev
%A A. P. Buslaev
%A V. V. Kozlov
%A A. G. Tatashev
%A M. V. Yashina
%T Generalized transport-logistic problem as class of dynamical systems
%J Matematičeskoe modelirovanie
%D 2015
%P 65-87
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/
%G ru
%F MM_2015_27_12_a4
A. S. Bugaev; A. P. Buslaev; V. V. Kozlov; A. G. Tatashev; M. V. Yashina. Generalized transport-logistic problem as class of dynamical systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 65-87. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a4/

[1] V. V. Kozlov (eds.), Traffic and Granular Flow'11, Springer, Heidelberg–New York–Dordrecht–London, 2013

[2] A. Puankare, Izbrannye trudy, v. 1–3, Nauka, M., 1971; 1972; 1974 [J. H. Poincare, Selected Works, v. 1–3, Nauka, M., 1971]; 1972; 1974

[3] V. I. Arnold et al., Dynamical systems, Sovremennye problemy matematiki, 1, 2, VINITI, M., 1985

[4] P. R. Halmos, Lectures on ergodic theory, Chelsen Pub. Co, NY, 1956, 99 pp. | MR

[5] M. Kac, Probability and related topics in physical sciences, Interscience Publishers LTD, London, 1959 | MR | Zbl

[6] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaia mekhanika, NITS “Regularnaia i stokhasticheskaia dinamika”, Izhevsk, 2008, 203 pp.

[7] V. V. Kozlov, Izbrannye rabotu po matematike, mekhanike I matematicheskoi fizike, NITS Regularnaia i stokhasticheskaia dinamika, Izhevsk, 2010, 672 pp.

[8] M. J. Lighthill, G. B. Whitham, “On Kinematic Waves. II: A Theory of Traffic Flow on Long Crowded Roads”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229:1178 (1955), 317 | DOI | MR | Zbl

[9] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, New York, 1974 | MR | Zbl

[10] Iu. N. Karamzin, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Dvumernaia model avtomobilnukh potokov”, Matematicheskoe modelirovanie, 18:6 (2006), 85–95 | Zbl

[11] K. Nagel, M. Schreckenberg, “A cellular automation model for freeway traffic”, J. Physique I, 2 (1992), 1–64 | DOI

[12] M. Schreckenberg, A. Schadschneider, K. Nagel, N. Ito, “Discrete stochastic models for traffic flow”, Phys. Rev. E, 51 (1995), 2939–2949 | DOI

[13] C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory”, Transp. Res. B, 28:4 (1994), 269–287 | DOI

[14] C. F. Daganzo, “The cell transmission model, II”, Network traffic, Transp. Res. B, 29:2 (1995), 79–93

[15] M. L. Blank, “Tochonyi analiz dinamicheskikh sistem, voznikaiushchikh v modeliakh transportnukh potokov”, Uspekhi matematicheskikh nauk, 55:3 (2000), 167–168 | DOI | MR | Zbl

[16] M. Blank, “Dynamics of traffic flow traffic jams: order and chaos”, Mosc. Math. J., 1:1 (2000), 1–26 | MR

[17] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, Monotonic random walks and cluster flows on networks. Models and applications, Lambert Academician Publisning, Saarbruecken, 2013

[18] A. S. Bugaev, A. P. Buslaev, V. V. Kozlov, A. G. Tatashev, M. V. Yashina, “Modelirovanie trafika: monotonnoe sluchainoe bluzhdanie po seti”, Matem. modelirovanie, 25:8 (2013), 3–21 | MR

[19] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “On synergy of totally connected flows on chainmails”, Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMSSE 2013 (Almeria Spain, 2013, 24–27 June), v. 3, 352–358

[20] A. P. Buslaev, A. G. Tatashev, “Particles flow on the regular polygon”, Journal of Concrete and Applicable Mathematics, 9:4 (2011), 290–303 | MR | Zbl

[21] A. P. Buslaev, A. G. Tatashev, “Monotonic random walk on a one-dimensional lattice”, J. of Concrete and Applicable Mathematics (JCAAM), 10:1–2 (2012), 130–139 | MR | Zbl

[22] A. P. Buslaev, A. G. Tatashev, “On exact values on monotonic random walks characteristics on lattices”, J. of Concrete and Applicable Mathematics, 11:1 (2013), 17–22 | MR | Zbl

[23] K. K. Glukharev, I. V. Markin, “O predstavlenie dorozhnoi seti dolnym grafom”, Sovremennye problemu fundamentalnykh I prikladnyh nauk, Trudy 50-i nauchnoi konferentsii MFTI, v. III, Aerofisika I kosmicheskie issledovaniai, 2007, 130–134

[24] K. K. Glukharev, N. M. Ulyukov, A. M. Valuev, I. N. Kalinin, “On traffic flow on the arterial network model”, Traffic and Granular Flow'11, Springer-Verlag, Berlin–Heidelberg, 2013, 399–411 | DOI

[25] A. P. Buslaev, A. G. Tatashev, M. V. Yashina, “Cluster flow models and properties of appropriate dynamic systems”, J. of Applied Functional Analysis, 8:1 (2013), 54–76 | MR | Zbl

[26] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “Monotonic walks on a necklace and coloured dynamic vector”, International J. of Computer Mathematics, 2014 | DOI | MR

[27] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “Behavior of pendulums on a regular polygon”, J. of Communication and Computer, 11 (2014), 30–38

[28] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, M. V. Yashina, “Monotonic walks of particles on a chainmail and coloured matrices”, Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMSSE 2014 (Cadiz, Spain, June 3–7 2014), v. 3, 801–805

[29] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “A dynamical communication system on a network”, Journal of Computational and Applied Mathematics, 275 (2015), 247–261 | DOI | MR | Zbl

[30] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways for your mathematical plays, v. 4, A. K. Peters, Ltd, Wellesly, Massachusetts, 2004 | MR | Zbl

[31] A. A. Borovkov, Teoriia veroiatnostei, Editorial URSS, M., 1999, 472 pp.

[32] V. V. Kozlov, “Statisticheskaia neobratimost v obratimoi modeli Kats”, Nelineinaia dinamika, 7:1 (2011), 101–117 | MR | Zbl

[33] H. G. Schuster, Deterministic Chaos. An Introduction, Physik-Verlag, Weinheim, 1984 | MR | Zbl

[34] I. M. Vinogradov, Elements of Number Theory, Dover Publications, NY, 1954

[35] A. Iu. Uteshev, Indeks (diskretnyi logarifm)

[36] A. S. Bugaev, A. P. Buslaev, V. V. Kozlov, M. V. Yashina, “Distributed Problems of Monitoring and Modern Approaches to Traffic Modeling”, 14-th International IEEE Conference on Intelligent Transportation Systems, ITSC 2011 (Washington, USA, 5–7.10.2011), 2011, 477–481 | DOI

[37] V. V. Kozlov, A. P. Buslaev, “On a system of nonlinear differential equations for the model of totally connected traffic”, Journal of Concrete and Applicable Mathematics, 12:1–2 (2014), 86–93 | MR | Zbl

[38] A. P. Buslaev, A. V. Novikov, V. M. Prikhodko, A. G. Tatashev, M. V. Yashina, Veroiatnostnue i imitatsionnue podhodu k optimizatsii avtodorozhnogo dvizheniia, Mir, M., 2003, 368 pp.

[39] V. V. Kozlov, “Stochastic irreversibility of the Kac reversible circular model”, Rus. J. Nonlin. Dyn., 7:1 (2011), 101–117

[40] M. A. Trapeznikova, A. A. Chechina, N. G. Churbanova, D. B. Poliakov, “Matematicheskoe modelirovanie potokov avtotransporta na osnove makro i mikroskopicheskikh pofkhodov”, Vestnik Arkhangelskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Upravlenie, vychilitelnaia technika i informatika, 2014, no. 1

[41] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “A dynamical communication system on a network”, J. of Computational and Applied Mathematics, 275 (2015), 247–261 | DOI | MR | Zbl