Electromagnetic wave's propagation in medium with nonstationary permittivity and permeability. Part~1
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 48-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fundamental system of Maxwell's equations for electromagnetic waves propagating in a medium with time-dependent permittivity and permeability are treated as controls in photonics devices is formulated in terms of field potentials. Fact that the wave will be harmonic (with frequency bigger than first one) if and only if controls is also harmonic with double frequency and specially fitted amplitude is shown for monochromatic plane wave in finite waveguide. Method of phase incursion’s and amplitude's of disturbed wave calculation is proposed.
Keywords: Maxwell's equations, the telegrapher's equations, permittivity, photonics.
@article{MM_2015_27_12_a3,
     author = {I. V. Matyushkin and G. Ya. Krasnikov and N. V. Chernyaev and E. S. Gornev and N. V. Evstratov},
     title = {Electromagnetic wave's propagation in medium with nonstationary permittivity and permeability. {Part~1}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--64},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a3/}
}
TY  - JOUR
AU  - I. V. Matyushkin
AU  - G. Ya. Krasnikov
AU  - N. V. Chernyaev
AU  - E. S. Gornev
AU  - N. V. Evstratov
TI  - Electromagnetic wave's propagation in medium with nonstationary permittivity and permeability. Part~1
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 48
EP  - 64
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a3/
LA  - ru
ID  - MM_2015_27_12_a3
ER  - 
%0 Journal Article
%A I. V. Matyushkin
%A G. Ya. Krasnikov
%A N. V. Chernyaev
%A E. S. Gornev
%A N. V. Evstratov
%T Electromagnetic wave's propagation in medium with nonstationary permittivity and permeability. Part~1
%J Matematičeskoe modelirovanie
%D 2015
%P 48-64
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a3/
%G ru
%F MM_2015_27_12_a3
I. V. Matyushkin; G. Ya. Krasnikov; N. V. Chernyaev; E. S. Gornev; N. V. Evstratov. Electromagnetic wave's propagation in medium with nonstationary permittivity and permeability. Part~1. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 48-64. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a3/

[1] J. D. Joannopoulos et al., Photonic Crystals: Molding the Flow of Light, Second Edition, Princeton University Press, 2008, 286 pp. | Zbl

[2] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, John Wiley Sons, Inc., 2007, 947 pp.

[3] I. T. Aleksanian, N. V. Cherniaev, “Ispolzovanie uravnenii Maksvella dlia degradiruiushchei sredy pri izuchenii nadezhnosti elektronnykh izdelii”, Materialy 1-i nauchno-tekhnicheskoi konferentsii AOOT «NIIME i zavod Mikron» (Zelenograd, 1998), 271

[4] R. S. Jacobsen et al., “Strained silicon as a new electro-optic material”, Nature, 441 (2006), 199–202 | DOI

[5] L. D. Landau, E. M. Lifshitz, A Course of Theoretical Physics, v. 2, The Classical Theory of Fields, Pergamon Press, 1971 | MR | Zbl

[6] M. M. Bredov, V. V. Rumiantsev, I. N. Toptygin, Klassicheskaia elektrodinamika, Nauka, M., 1985, 70–88

[7] V. I. Korziuk, I. S. Kozlovskaia, Iu. V. Sheiko, “Reshenie zadachi Koshi dlia telegrafnogo uravneniia metodom kharakteristik”, Izvestiia natsionalnoi akademii nauk Belarusi. Seriia fiziko-matematicheskikh nauk, 2011, no. 4, 48–55

[8] B. Pekmen, M. Tezer-Sezgin, “Research Article Differential Quadrature Solution of Hyperbolic Telegraph Equation”, Journal of Applied Mathematics, 2012, 924765, 18 pp. | MR | Zbl

[9] M. Dehghan, A. Shokri, “A Numerical Method for Solving the Hyperbolic Telegraph Equation”, Numer. Methods Partial Differential Eq., 24:4 (2008), 1080–1093 | DOI | MR | Zbl

[10] P. Goorjian et al., “Computational Modeling of Femtosecond Optical Solitons from Maxwell's Equations”, IEEE Journal of Quantum Electronics, 28:10 (1992), 2416–2422 | DOI