Numerical simulation of the flow around cylinder with sphere nose using direct simulation Monte-Carlo method
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of the axisymmetric flows on the direct simulation Monte-Carlo method (DSMC) basis is under the consideration. Molecules transfer algorithm for the axisymmetric 2D unstructured computation grid was proposed. Molecules impact cross section parameters in the framework of variable hard spheres model were defined more accurately for the N$_2$ gas at low temperatures. Computational and classical experimental data of the rarefied flow around cylinder with spherical nose are presented. These data could be used for the validation of developed DSMC codes.
Keywords: direct simulation Monte-Carlo method, axisymmetric flows, rarefied gases.
@article{MM_2015_27_12_a2,
     author = {A. L. Kusov},
     title = {Numerical simulation of the flow around cylinder with sphere nose using direct simulation {Monte-Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a2/}
}
TY  - JOUR
AU  - A. L. Kusov
TI  - Numerical simulation of the flow around cylinder with sphere nose using direct simulation Monte-Carlo method
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 33
EP  - 47
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a2/
LA  - ru
ID  - MM_2015_27_12_a2
ER  - 
%0 Journal Article
%A A. L. Kusov
%T Numerical simulation of the flow around cylinder with sphere nose using direct simulation Monte-Carlo method
%J Matematičeskoe modelirovanie
%D 2015
%P 33-47
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a2/
%G ru
%F MM_2015_27_12_a2
A. L. Kusov. Numerical simulation of the flow around cylinder with sphere nose using direct simulation Monte-Carlo method. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 33-47. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a2/

[1] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994, 458 pp. | MR

[2] G. A. Bird, M. A. Gallis, J. R. Torczynski, D. J. Rader, “Accuracy and Efficiency of the Sophisticated Direct Simulation Monte Carlo Algorithm for Simulating Non-continuum Gas Flows”, The Physics of Fluids, 21 (2009) | DOI | Zbl

[3] J. M. Burt, E. Josyula, I. D. Boyd, “Novel Cartesian implementation of the direct simulation Monte Carlo method”, Journal of thermophysics and heat transfer, 26:2 (2012), 258–270 | DOI

[4] Ye. A. Bondar, A. A. Shevyrin, Y. S. Chen, A. N. Shumakova, A. V. Kashkovsky, M. S. Ivanov, “Direct Monte Carlo simulation of high-temperature chemical reactions in air”, Thermophysics and Aeromechanics, 20:5 (2013), 553–564 | DOI | MR

[5] S. Gimelshein, I. Wysong, Y. Bondar, M. Ivanov, “Accuracy analysis of DSMC chemistry models applied to a normal shock wave”, AIP Conf. Proc., 1501, 2012, 637–643 | DOI

[6] T. R. Deschenes, T. D. Holman, I. D. Boyd, “Effects of Rotational Energy Relaxation in a Modular Particle-Continuum Method”, Journal of thermophysics and heat transfer, 25:2 (2011), 218–227 | DOI

[7] T. D. Holman, I. D. Boyd, “Effects of continuum breakdown on the surface properties of a hypersonic sphere”, Journal of thermophysics and heat transfer, 23:4 (2009), 660–673 | DOI

[8] B. A. Zemlynskiy, V. V. Lunev, V. I. Vlasov, A. B. Gorshkov, G. N. Zalogin, R. V. Kovaliov, V. P. Marinin, I. N. Murzinov, Convective heat exchange of aircrafts, Fizmatlit, M., 2014, 380 pp.

[9] A. L. Kusov, V. V. Lunev, “Primenenie metoda priamogo statisticheskogo modelirovaniia Monte-Karlo pri reshenii zadachi o nestatsionarnom razlete razrezhennogo gaza v sluchae ego ispareniia s peregretoi poverkhnosti materiala v vakuum”, Kosmonavtika i raketostroenie, 2010, no. 1(58), 36–45

[10] I. M. Sobol', A primer for the Monte Carlo method, CRC Press, 1994, 107 pp. | MR | Zbl

[11] K. Koura, “Null-collision Technique in the Direct Simulation Monte Carlo Technique”, The Physics of Fluids, 29 (1986), 3509–3511 | DOI

[12] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, NY, 1954 | Zbl

[13] Chernyj G. G., Losev S. A. (eds.), Physical and chemical processes in the gas dynamics. Computer guide, v. 1, MSU edition, M., 1995, 350 pp.

[14] I. S. Grigor'ev, E. Z. Meilikhov (eds.), Physical quantity: guide, Energoatomizdat, M., 1991, 1232 pp.

[15] I. D. Boyd, “Rotational and Vibrational Nonequilibrium Effects in Rarefied Hypersonic Flow”, J. Thermophysics, 4:4 (1990), 478–484 | DOI

[16] V. I. Vlasov, R. V. Kovalev, A. L. Kusov, “Raschet teplovogo rezhima derzhavki dlia obraztsov ispytuemykh materialov s tseliu optimizatsii formy ustroistva i primeniaemykh dlia ego izgotovleniia vysokotemperaturnykh materialov”, Kosmonavtika i raketostroenie, 2004, no. 3(36), 62–69

[17] J.-S. Wu, Y.-Y. Lian, G. Cheng, R. Koomullil, K.-C. Tseng, “Development and Verification of a Coupled DSMC-NS Scheme Using Unstructured Mesh”, Journal of Computational Physics, 219:2 (2006), 579–607 | DOI | Zbl

[18] Iu. A. Koshmarov, Iu. A. Ryzhov, Prikladnaia dinamika razrezhennogo gaza, Mashinostroenie, M., 1977, 184 pp.

[19] I. F. Zavarzina, “Experimental investigations of local heat fluxes on a sphere and on the spherical blunt end of an axisymmetric body”, Fluid Dynamics, 5:4 (1970), 662–666 | DOI

[20] R. S. Hickman, W. H. Gildt, “Heat transfer to a hemisphere-cylinder at low Reynolds numbers”, AIAA Journal, 1:3 (1963), 665–675 | DOI | MR | Zbl