Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_12_a1, author = {K. P. Belyaev and A. A. Kuleshov and N. P. Tuchkova and C. A. S. Tanajura}, title = {Method of dynamic model results correction by observational data and its application in oceanography}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--32}, publisher = {mathdoc}, volume = {27}, number = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/} }
TY - JOUR AU - K. P. Belyaev AU - A. A. Kuleshov AU - N. P. Tuchkova AU - C. A. S. Tanajura TI - Method of dynamic model results correction by observational data and its application in oceanography JO - Matematičeskoe modelirovanie PY - 2015 SP - 20 EP - 32 VL - 27 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/ LA - ru ID - MM_2015_27_12_a1 ER -
%0 Journal Article %A K. P. Belyaev %A A. A. Kuleshov %A N. P. Tuchkova %A C. A. S. Tanajura %T Method of dynamic model results correction by observational data and its application in oceanography %J Matematičeskoe modelirovanie %D 2015 %P 20-32 %V 27 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/ %G ru %F MM_2015_27_12_a1
K. P. Belyaev; A. A. Kuleshov; N. P. Tuchkova; C. A. S. Tanajura. Method of dynamic model results correction by observational data and its application in oceanography. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 20-32. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/
[1] M. Ghil, P. Malnotte-Rizzoli, “Data assimilation in meteorology and oceanography”, Adv. Geophys., 33 (1991), 141–266 | DOI
[2] V. V. Penenko, Methods of numerical modelling of atmospheric processes, Gidrometeoizdat, L., 1981, 332 pp. | MR
[3] G. I. Marchuk, V. V. Penenko, “Application of perturbation theory to problems of simulation of atmospheric processes”, Monsoon Dynamics, eds. J. Lighthill, R. Pearce, Cambridge University Press, Cambridge, 1981, 639–655 | DOI
[4] G. I. Marchuk, V. B. Zalesny, “A numerical technique for geophysical data assimilation problems using Pontryagin's principle and splitting-up method”, Russ. J. Numer. Anal. Math. Modelling, 8:4 (1993), 311–326 | DOI | MR | Zbl
[5] V. B. Zalesny, A. S. Rusakov, “Numerical algorithm of data assimilation based on splitting and adjoint equation methods”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 199–219 | DOI | MR | Zbl
[6] V. P. Shutyaev, E. I. Parmuzin, “Some algorithms for studying solution sensitivity in the problem of variational assimilation of observation data for a model of ocean thermodynamics”, Russ. J. Numer. Anal. Math. Modelling, 24:2 (2009), 145–160 | MR | Zbl
[7] V. I. Agoshkov, E. I. Parmuzin, V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution”, Izv. Atmos. Ocean. Phys., 49:6 (2013), 592–602 | DOI | DOI
[8] O. Talagrand, P. Courtier, “Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory”, Quart. J. Roy. Meteor. Soc., 113 (1987), 1311–1328 | DOI
[9] G. Evensen, “Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics”, J. Geophys. Res., 1994, no. 6, 1014–1062
[10] G. Evensen, “The ensemble Kalman filter: Theoretical formulation and practical implementation”, Ocean Dyn., 53 (2003), 343–367 | DOI
[11] K. Belyaev, C. A. S. Tanajura, J. J. O'Brien, “A data assimilation technique with an ocean circulation model and its application to the tropical Atlantic”, Appl. Math. Model., 25 (2001), 655–670 | DOI | Zbl
[12] C. A. S. Tanajura, K. Belyaev, “A sequential data assimilation method based on the properties of diffusion-type process”, Appl. Math. Model., 33 (2009), 2165–2174 | DOI | MR | Zbl
[13] A. C. Lorenc, N. E. Bowler, A. M. Clayton, S. R. Pring, D. Fairbairn, “Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NW”, Mon. Wea. Rev., 143 (2015), 212–229 | DOI
[14] R. Bleck, D. B. Boudra, “Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate”, J. Phys. Oceanogr., 1981, no. 11, 755–770 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[15] R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates”, Ocean Model., 2002, no. 4, 55–88 | DOI
[16] C. A. S. Tanajura, L. N. Lima, “Assimilation of sea surface height anomalies into hycom with an optimal interpolation scheme over the Atlantic ocean Metarea V”, Geophys. Bras. J., 31 (2013), 257–270
[17] K. Belyaev, C. A. S. Tanajura, N. Tuchkova, “Comparison of Argo drifter data assimilation methods for hydrodynamic models”, Oceanology, 52:5 (2012), 523–615 | DOI | MR
[18] F. P. Vasilev, Metody optimizatsii, Faktorial, M., 2002, 823 pp.
[19] W. M. Wonham, Stochastic problems in optimal control, IEEE Convention record, Part 11, 1963, 114–124
[20] E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. Cummings, G. R. Halliwell, R. Bleck, R. Baraille, A. J. Wallcraft, C. Lozano, “US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)”, Oceanography, 22 (2009), 64–75 | DOI
[21] E. Kalnay et al., “The NCEP/NCAR 40-year reanalysis project”, Bull. Amer. Meteorol. Soc., 77 (1996), 437–472 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[22] J. Xie, J. Zhu, “Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model”, Ocean Modelling, 33 (2010), 283–298 | DOI