Method of dynamic model results correction by observational data and its application in oceanography
Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

New method of data assimilation for the correction of model computations is developed and applied. The method is based on the path of least resistance principle and uses the theory of diffusion stochastic processes and stochastic differential equations. Derived from this principle the system of linear equations is needed to be solved to apply this method. This system may be considered as a generalization of the known Kalman scheme when dynamics of the model is taken into account. The method is applied to numerical experiments in conjunction with model circulation HYCOM and satellite sea level observational data from archive AVISO for Atlantic. The skill of the method is assessed using the results of the experiments. The model output is compared with twin experiments, namely the model calculation without assimilation and one comes to the conclusion that the proposed method is consistent and robust.
Keywords: data assimilation methods, path of least resistance principle, ocean dynamics models.
@article{MM_2015_27_12_a1,
     author = {K. P. Belyaev and A. A. Kuleshov and N. P. Tuchkova and C. A. S. Tanajura},
     title = {Method of dynamic model results correction by observational data and its application in oceanography},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {27},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/}
}
TY  - JOUR
AU  - K. P. Belyaev
AU  - A. A. Kuleshov
AU  - N. P. Tuchkova
AU  - C. A. S. Tanajura
TI  - Method of dynamic model results correction by observational data and its application in oceanography
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 20
EP  - 32
VL  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/
LA  - ru
ID  - MM_2015_27_12_a1
ER  - 
%0 Journal Article
%A K. P. Belyaev
%A A. A. Kuleshov
%A N. P. Tuchkova
%A C. A. S. Tanajura
%T Method of dynamic model results correction by observational data and its application in oceanography
%J Matematičeskoe modelirovanie
%D 2015
%P 20-32
%V 27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/
%G ru
%F MM_2015_27_12_a1
K. P. Belyaev; A. A. Kuleshov; N. P. Tuchkova; C. A. S. Tanajura. Method of dynamic model results correction by observational data and its application in oceanography. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 20-32. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a1/

[1] M. Ghil, P. Malnotte-Rizzoli, “Data assimilation in meteorology and oceanography”, Adv. Geophys., 33 (1991), 141–266 | DOI

[2] V. V. Penenko, Methods of numerical modelling of atmospheric processes, Gidrometeoizdat, L., 1981, 332 pp. | MR

[3] G. I. Marchuk, V. V. Penenko, “Application of perturbation theory to problems of simulation of atmospheric processes”, Monsoon Dynamics, eds. J. Lighthill, R. Pearce, Cambridge University Press, Cambridge, 1981, 639–655 | DOI

[4] G. I. Marchuk, V. B. Zalesny, “A numerical technique for geophysical data assimilation problems using Pontryagin's principle and splitting-up method”, Russ. J. Numer. Anal. Math. Modelling, 8:4 (1993), 311–326 | DOI | MR | Zbl

[5] V. B. Zalesny, A. S. Rusakov, “Numerical algorithm of data assimilation based on splitting and adjoint equation methods”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 199–219 | DOI | MR | Zbl

[6] V. P. Shutyaev, E. I. Parmuzin, “Some algorithms for studying solution sensitivity in the problem of variational assimilation of observation data for a model of ocean thermodynamics”, Russ. J. Numer. Anal. Math. Modelling, 24:2 (2009), 145–160 | MR | Zbl

[7] V. I. Agoshkov, E. I. Parmuzin, V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution”, Izv. Atmos. Ocean. Phys., 49:6 (2013), 592–602 | DOI | DOI

[8] O. Talagrand, P. Courtier, “Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory”, Quart. J. Roy. Meteor. Soc., 113 (1987), 1311–1328 | DOI

[9] G. Evensen, “Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics”, J. Geophys. Res., 1994, no. 6, 1014–1062

[10] G. Evensen, “The ensemble Kalman filter: Theoretical formulation and practical implementation”, Ocean Dyn., 53 (2003), 343–367 | DOI

[11] K. Belyaev, C. A. S. Tanajura, J. J. O'Brien, “A data assimilation technique with an ocean circulation model and its application to the tropical Atlantic”, Appl. Math. Model., 25 (2001), 655–670 | DOI | Zbl

[12] C. A. S. Tanajura, K. Belyaev, “A sequential data assimilation method based on the properties of diffusion-type process”, Appl. Math. Model., 33 (2009), 2165–2174 | DOI | MR | Zbl

[13] A. C. Lorenc, N. E. Bowler, A. M. Clayton, S. R. Pring, D. Fairbairn, “Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NW”, Mon. Wea. Rev., 143 (2015), 212–229 | DOI

[14] R. Bleck, D. B. Boudra, “Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate”, J. Phys. Oceanogr., 1981, no. 11, 755–770 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[15] R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates”, Ocean Model., 2002, no. 4, 55–88 | DOI

[16] C. A. S. Tanajura, L. N. Lima, “Assimilation of sea surface height anomalies into hycom with an optimal interpolation scheme over the Atlantic ocean Metarea V”, Geophys. Bras. J., 31 (2013), 257–270

[17] K. Belyaev, C. A. S. Tanajura, N. Tuchkova, “Comparison of Argo drifter data assimilation methods for hydrodynamic models”, Oceanology, 52:5 (2012), 523–615 | DOI | MR

[18] F. P. Vasilev, Metody optimizatsii, Faktorial, M., 2002, 823 pp.

[19] W. M. Wonham, Stochastic problems in optimal control, IEEE Convention record, Part 11, 1963, 114–124

[20] E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. Cummings, G. R. Halliwell, R. Bleck, R. Baraille, A. J. Wallcraft, C. Lozano, “US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)”, Oceanography, 22 (2009), 64–75 | DOI

[21] E. Kalnay et al., “The NCEP/NCAR 40-year reanalysis project”, Bull. Amer. Meteorol. Soc., 77 (1996), 437–472 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[22] J. Xie, J. Zhu, “Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model”, Ocean Modelling, 33 (2010), 283–298 | DOI