Self-organizing of stochastic traffic flows under influence of phase transitions induced by noise
Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The collective behaviour of stochastic traffic system of a city or its large region is investigated. It is shown in self-organising of the synchronised motion of the active particles (cars) taking place on principles of phase transitions. Thus spontaneous process of self-organising of chaotic traffic flows (providing a diversion from an optimum mode of a motion) occurs under the influence of any the correlated noise which are caused by influence on traffic conditions of cars of various random factors. Stationary states of a spatially homogeneous traffic flows in the presence of noise of the driving parametre are analysed.
Keywords: traffic flows, stochastic processes, self-organising, Fokker–Plank equation, noise-induced transitions.
Mots-clés : multiplicative noise
@article{MM_2015_27_11_a9,
     author = {A. V. Kolesnichenko},
     title = {Self-organizing of stochastic traffic flows under influence of phase transitions induced by noise},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {27},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a9/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - Self-organizing of stochastic traffic flows under influence of phase transitions induced by noise
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 120
EP  - 134
VL  - 27
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a9/
LA  - ru
ID  - MM_2015_27_11_a9
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T Self-organizing of stochastic traffic flows under influence of phase transitions induced by noise
%J Matematičeskoe modelirovanie
%D 2015
%P 120-134
%V 27
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a9/
%G ru
%F MM_2015_27_11_a9
A. V. Kolesnichenko. Self-organizing of stochastic traffic flows under influence of phase transitions induced by noise. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 120-134. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a9/

[1] A. V. Gasnikov i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, Uchebnoe posobie, ed. A. V. Gasnikov, MTsNMO, M., 2012, 376 pp.

[2] A. J. Wilson, “Entropy maximizing models in the theory of trip distributions, mode split and route split”, J. Transp. Econ. Policy, 3 (1969), 108–126

[3] A. J. Wilson, “A statistical theory of spatial distribution models”, Transp. Res., 1 (1967), 253–269 | DOI

[4] I. Prigogine, F. C. Andrews, “Boltzman-like approach for traffic flow”, Operations Research, 8:6 (1960), 789–797 | DOI | MR | Zbl

[5] I. Prigogine, P. Resibois, “On a Generalized Boltzmann-like Approach for Traffic Flow”, Bull. Cl. Sci., Acad. Roy. Belg., 48:9 (1962), 805–814 | Zbl

[6] I. Prigogine, R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, 1971, 95 pp. | Zbl

[7] S. L. Paveri-Fontana, “On Boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis”, Transportation Research, 9:4 (1975), 225–235 | DOI

[8] M. G. Lighthill, G. B. Whitham, “On kinetic waves. II: A theory of traffic flow on ling crowded roads”, Proc. Roy. Soc. London. Ser. A, 229:1178 (1955), 317–345 | DOI | MR | Zbl

[9] D. Helbing, “Improved fluid-dynamic model for vehicular traffic”, Phys. Rev. E, 51 (1995), 3163–3169 | DOI

[10] Iu. N. Karamzin, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Dvumernaia model avtomobilnykh potokov”, Matematicheskoe modelirovanie, 18:6 (2006), 85–95 | Zbl

[11] A. B. Sukhinova, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Two-Dimensional MacroscopicModel of TrafficFlows”, Mathematical models and computer simulations, 1:6 (2009), 669–676 | DOI | Zbl

[12] B. N. Chetverushkin, M. A. Trapeznikova, I. R. Furmanov, N. G. Churbanova, “Makro- i mikroskopicheskie modeli dlia opisaniia dvizheniia avtotransporta na mnogopolosnykh magistraliakh”, Trudy MFTI, 2:4 (2010), 163

[13] P. L. Richards, “Shock waves on the highway”, Operations Research, 4:1 (1956), 42–51 | DOI | MR

[14] H. J. Payne, “Models of Freeway Traffic and Control”, Matematical Models of Public Systems, Simulation Council Proceedings Series, 1, 1971, 51–61

[15] M. Treiber, A. Hennecke, D. Helbing, “Congested traffic states in empirical observations and microscopic simulation”, Phys. Rev. E, 62 (2000), 1805–1824 | DOI

[16] V. S. Anishchenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neiman, G. I. Strelkova, L. Shimanskii-Gaier, Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, Institut kompiuternykh issledovanii, M.–Izhevsk, 2003, 544 pp.

[17] A. I. Olemskoi, Sinergetika slozhnykh sistem: Fenomenologiia i statistcheskaia teoriia, KRASAND, M., 2009, 384 pp.

[18] D. Helbing, “Traffic and related self-driven many particle systems”, Reviews of modern physics, 73:4 (2001), 1067–1141 ; arXiv: cond-mat/0012229 | DOI

[19] D. Ruelle, F. Takkens, “On the nature of turbulence”, Commun. Math. Phys., 20 (1971), 167–192 | DOI | MR | Zbl

[20] W. Horsthemke, R. Lefever, Noise Induced Transitions, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984, 395 pp. | MR | Zbl

[21] A. I. Olemskoi, D. O. Kharchenko, Samoorganizatsiia samopodobnykh stokhasticheskikh sistem, NITs «Reguliarnaia i khaoticheskaia dinamika». Institut kompiuternykh issledovanii, M.–Izhevsk, 2007, 296 pp.

[22] C. W. Gardiner, Handbook of stochastic methods, Springer-Verlag, New York, 1985 | MR | MR

[23] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, M., 1977, 488 pp. | MR