Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary
Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 95-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimentional electrical impedance tomography problem in case of object with a piecewise constant electrical conductivity is considered. The task is to determine the unknown boundary separating regions of object with different conductivity values, which are assumed to be known. Initial data for determination of inhomogeneity boundary represents electrical measurements taken on part of the object boundary. A numerical method for solving the problem is proposed, and numerical results are presented.
Keywords: electrical impedance tomography, piecewise constant conductivity, method of boundary integral equations, Tikhonov regularization.
@article{MM_2015_27_11_a7,
     author = {S. V. Gavrilov and A. M. Denisov},
     title = {Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {27},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/}
}
TY  - JOUR
AU  - S. V. Gavrilov
AU  - A. M. Denisov
TI  - Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 95
EP  - 109
VL  - 27
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/
LA  - ru
ID  - MM_2015_27_11_a7
ER  - 
%0 Journal Article
%A S. V. Gavrilov
%A A. M. Denisov
%T Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary
%J Matematičeskoe modelirovanie
%D 2015
%P 95-109
%V 27
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/
%G ru
%F MM_2015_27_11_a7
S. V. Gavrilov; A. M. Denisov. Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 95-109. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/

[1] L. Borcea, “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136 | MR

[2] G. J. Saulnier, R. S. Blue, J. C. Newell, D. Isaacson, P. M. Edic, “Electrical impedance tomography”, IEEE Signal Processing Magazine, 18:6 (2001), 31–43 | DOI

[3] G. Alessandrini, V. Isakov, “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28:1–2 (1996), 351–369 | MR | Zbl

[4] B. Barceo, E. Fabes, J. K. Seo, “The inverse conductivity problem with one measurement: uniqueness for convex polyhedra”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | DOI | MR

[5] H. Bellout, A. Friedman, V. Isakov, “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl

[6] K. Astala, L. Paivarinta, “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl

[7] H. Kang, J. K. Seo, D. Sheen, “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI | MR | Zbl

[8] M. Bruhl, M. Hanke, “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR | Zbl

[9] M. Bruhl, M. Hanke, “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90 | MR

[10] H. Eckel, R. Kress, “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl

[11] K. Knudsen, M. Lassas, J. L. Mueller, S. Siltanen, “Regularized D-bar method for the inverse conductivity problem”, Inverse Problems and Imaging, 2009, no. 3, 599–624 | DOI | MR | Zbl

[12] E. Lee, J. K. Seo, B. Harrach, S. Kim, “Projective Electrical Impedance Reconstruction with Two Measurements”, SIAM Journal on Applied Mathematics, 73:4 (2013), 1659–1675 | DOI | MR | Zbl

[13] A. M. Denisov, E. V. Zakharov, A. V. Kalinin, V. V. Kalinin, “Numerical methods for some inverse problems of heart electrophysiology”, Differential Equations, 45:7 (2009), 1034–1043 | DOI | MR | Zbl

[14] S. V. Gavrilov, A. M. Denisov, “Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace's equation in a piecewise homogeneous medium”, Computational Mathematics and Mathematical Physics, 51:8 (2011), 1377–1390 | DOI | MR | Zbl

[15] S. V. Gavrilov, A. M. Denisov, “Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1139–1148 | DOI | MR | Zbl

[16] Y. Zou, Z. Guo, “A review of electrical impedance techniques for breast cancer detection”, Medical Engineering and Physics, 25:2 (2003), 19–90 | DOI

[17] S. Zolchiver, M. M. Radai, M. Rosenfled, S. Abboud, “Induced current impedance technique for monitoring brain cryosurgery in a two-dimensional model of the head”, Annals of Biomedical Engineering, 30:9 (2002), 1172–1180 | DOI

[18] E. Lee, Ts. Munkh-Erdene, J. K. Seo, E. J. Woo, “Breast EIT using a new projected image reconstruction method with multi-frequency measurements”, Physiological Measurement, 33:5 (2012), 751–765 | DOI

[19] R. Latte's, J. L. Lions, The Method of Quasi-Reversibility. Applications to Partial Differential Equations, American Elsevier Publishing Company, 1969 | MR

[20] V. A. Kozlov, V. G. Maz'ya, A. V. Fomin, “An iterative method for solving the Cauchy problem for elliptic equations”, USSR Computational Mathematics and Mathematical Physics, 31:1 (1991), 45–52 | MR | Zbl

[21] A. M. Denisov, E. V. Zakharov, A. V. Kalinin, “Method for Determining the Projection of an Arrhythmogenic Focus on the Heart Surface, Based on Solving the Inverse Electrocardiography Problem”, Mathematical Models and Computer Simulations, 4:6 (2012), 535–540 | DOI | MR

[22] Nho Hao Dihn, D. Lesnic, “The Cauchy problem for Laplace's equation using the conjugate gradient method”, IMA J. Appl. Math., 65 (2000), 199–217 | DOI | MR | Zbl

[23] D. F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan Kaufman Publishers, San Francisko, 2001

[24] G. Farin, Curves and surfaces for CAGD: a practical guide, Fifth edition, Morgan Kaufman Publishers, San Francisko, 2002 | MR