Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_11_a7, author = {S. V. Gavrilov and A. M. Denisov}, title = {Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--109}, publisher = {mathdoc}, volume = {27}, number = {11}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/} }
TY - JOUR AU - S. V. Gavrilov AU - A. M. Denisov TI - Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary JO - Matematičeskoe modelirovanie PY - 2015 SP - 95 EP - 109 VL - 27 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/ LA - ru ID - MM_2015_27_11_a7 ER -
%0 Journal Article %A S. V. Gavrilov %A A. M. Denisov %T Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary %J Matematičeskoe modelirovanie %D 2015 %P 95-109 %V 27 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/ %G ru %F MM_2015_27_11_a7
S. V. Gavrilov; A. M. Denisov. Numerical method for solving a three-dimentional electrical impedance tomography problem in case of data given on part of the boundary. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 95-109. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a7/
[1] L. Borcea, “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136 | MR
[2] G. J. Saulnier, R. S. Blue, J. C. Newell, D. Isaacson, P. M. Edic, “Electrical impedance tomography”, IEEE Signal Processing Magazine, 18:6 (2001), 31–43 | DOI
[3] G. Alessandrini, V. Isakov, “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28:1–2 (1996), 351–369 | MR | Zbl
[4] B. Barceo, E. Fabes, J. K. Seo, “The inverse conductivity problem with one measurement: uniqueness for convex polyhedra”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | DOI | MR
[5] H. Bellout, A. Friedman, V. Isakov, “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl
[6] K. Astala, L. Paivarinta, “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl
[7] H. Kang, J. K. Seo, D. Sheen, “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI | MR | Zbl
[8] M. Bruhl, M. Hanke, “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR | Zbl
[9] M. Bruhl, M. Hanke, “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90 | MR
[10] H. Eckel, R. Kress, “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl
[11] K. Knudsen, M. Lassas, J. L. Mueller, S. Siltanen, “Regularized D-bar method for the inverse conductivity problem”, Inverse Problems and Imaging, 2009, no. 3, 599–624 | DOI | MR | Zbl
[12] E. Lee, J. K. Seo, B. Harrach, S. Kim, “Projective Electrical Impedance Reconstruction with Two Measurements”, SIAM Journal on Applied Mathematics, 73:4 (2013), 1659–1675 | DOI | MR | Zbl
[13] A. M. Denisov, E. V. Zakharov, A. V. Kalinin, V. V. Kalinin, “Numerical methods for some inverse problems of heart electrophysiology”, Differential Equations, 45:7 (2009), 1034–1043 | DOI | MR | Zbl
[14] S. V. Gavrilov, A. M. Denisov, “Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace's equation in a piecewise homogeneous medium”, Computational Mathematics and Mathematical Physics, 51:8 (2011), 1377–1390 | DOI | MR | Zbl
[15] S. V. Gavrilov, A. M. Denisov, “Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1139–1148 | DOI | MR | Zbl
[16] Y. Zou, Z. Guo, “A review of electrical impedance techniques for breast cancer detection”, Medical Engineering and Physics, 25:2 (2003), 19–90 | DOI
[17] S. Zolchiver, M. M. Radai, M. Rosenfled, S. Abboud, “Induced current impedance technique for monitoring brain cryosurgery in a two-dimensional model of the head”, Annals of Biomedical Engineering, 30:9 (2002), 1172–1180 | DOI
[18] E. Lee, Ts. Munkh-Erdene, J. K. Seo, E. J. Woo, “Breast EIT using a new projected image reconstruction method with multi-frequency measurements”, Physiological Measurement, 33:5 (2012), 751–765 | DOI
[19] R. Latte's, J. L. Lions, The Method of Quasi-Reversibility. Applications to Partial Differential Equations, American Elsevier Publishing Company, 1969 | MR
[20] V. A. Kozlov, V. G. Maz'ya, A. V. Fomin, “An iterative method for solving the Cauchy problem for elliptic equations”, USSR Computational Mathematics and Mathematical Physics, 31:1 (1991), 45–52 | MR | Zbl
[21] A. M. Denisov, E. V. Zakharov, A. V. Kalinin, “Method for Determining the Projection of an Arrhythmogenic Focus on the Heart Surface, Based on Solving the Inverse Electrocardiography Problem”, Mathematical Models and Computer Simulations, 4:6 (2012), 535–540 | DOI | MR
[22] Nho Hao Dihn, D. Lesnic, “The Cauchy problem for Laplace's equation using the conjugate gradient method”, IMA J. Appl. Math., 65 (2000), 199–217 | DOI | MR | Zbl
[23] D. F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan Kaufman Publishers, San Francisko, 2001
[24] G. Farin, Curves and surfaces for CAGD: a practical guide, Fifth edition, Morgan Kaufman Publishers, San Francisko, 2002 | MR