Numerical modeling of wave processes in layered media in the Arctic
Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is numerical simulation of wave propagation in media with linear-elastic and acoustic layers. As an example the seismic exploration in the Arctic and the explosive impact of an iceberg had been simulated. The complete system of equations describing the state of a linearly elastic body and a system of equations describing the acoustic field are solving. The use of the grid-characteristic method provides correctly describing the contact and boundary conditions, including the contact condition of between acoustic and linear-elastic layers.
Keywords: grid-characteristic method, numerical modeling, Arctic shelf seismic prospecting, icebergs.
@article{MM_2015_27_11_a5,
     author = {A. V. Favorskaya and I. B. Petrov and D. I. Petrov and N. I. Khokhlov},
     title = {Numerical modeling of wave processes in layered media in the {Arctic}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {27},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a5/}
}
TY  - JOUR
AU  - A. V. Favorskaya
AU  - I. B. Petrov
AU  - D. I. Petrov
AU  - N. I. Khokhlov
TI  - Numerical modeling of wave processes in layered media in the Arctic
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 63
EP  - 75
VL  - 27
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a5/
LA  - ru
ID  - MM_2015_27_11_a5
ER  - 
%0 Journal Article
%A A. V. Favorskaya
%A I. B. Petrov
%A D. I. Petrov
%A N. I. Khokhlov
%T Numerical modeling of wave processes in layered media in the Arctic
%J Matematičeskoe modelirovanie
%D 2015
%P 63-75
%V 27
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a5/
%G ru
%F MM_2015_27_11_a5
A. V. Favorskaya; I. B. Petrov; D. I. Petrov; N. I. Khokhlov. Numerical modeling of wave processes in layered media in the Arctic. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 63-75. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a5/

[1] Iu. N. Novikov, S. V. Gazhula, “Osobennosti otsenki mestorozhdenij uglevodorodnogo syria arkticheskogo shelfa Rossii i ikh pereotsenki v sootvetstvii s novoj klassifikatsiej zapasov”, Neftegazovaia geologiia. Teoriia i praktika, 2008, no. 3, 1–19

[2] S. G. Lee, S. H. Lun, G. Y. Kong, “Modeling and simulation system for marine accident cause investigation”, Collision and Graunding of Ships and Offsore Structure, eds. Amdahl, Ehlers, Leira, Taylor and France Group, London, 2013, 39–47 | DOI

[3] A. T. Bekker, O. A. Sabobash, V. I. Seliverstov, G. I. Koff, E. N. Pipko, “Estimation of Limit Ice Loads on Engeneering Offshore Structures in the See of Okhotsk”, Proceeding of the Nineteenth International Offshore and Polar Engeneering Conference (2009), 574–579

[4] R. V. Goldshtejn, N. M. Osipenko, “Treshhinostojkost i razrusheniia ledianogo pokrova ledokolami”, Trudy AANII, 391, 1986, 137–156

[5] R. V. Goldshtejn, N. M. Osipenko, “Voprosy mehaniki razrusheniia lda i ledianogo pokrova pri analize ledianyh nagruzok”, Vesti gazovoj nauki. Sovremennye podkhody i perspektivnye tehnologii v proektakh osvoeniia neftegazovykh mestorozhdenij rossijskogo shelfa, 3(4), Gazprom, VNNIGAZ, M., 2013, 104–112 | Zbl

[6] D. G. Levchenko, A. V. Zakirov, V. D. Levchenko, “Dynamic modeling of the propagation of low-frequency seismic acoustic fields in the oceanic medium”, Doklady Earth Sciences, 435:2 (2010), 1623–1626 | DOI | Zbl

[7] V. A. Mirjakha, A. V. Sannikov, I. B. Petrov, “Discontinuous Galerkin Method for Numerical Simulation of Dynamic Processes in Solids”, Mathematical Models and Computer Simulations, 7:5 (2015), 446–455 | DOI | Zbl

[8] M. S. Zhdanov, Geohpysical Inverse Theory and Regularization Problems, Elseiver, 2002, 609 pp.

[9] V. Novatskij, Teoriia uprugosti, Mir, M., 1975, 872 pp. | MR

[10] I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, I. E. Kvasov, “Grid-characteristic method using highorder interpolation on tetrahedral hierarchical meshes with a multiple time step”, Mathematical Models and Computer Simulations, 5:5 (2013), 409–415 | DOI

[11] L. D. Landau, E. M. Lifshitz, A Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon Press, 1959 | MR

[12] V. Novatskij, Volnovye zadachi teorii plastichnosti, Mir, M., 1978, 307 pp.

[13] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method”, Computational Mathematics and Mathematical Physics, 53:10 (2013), 1523–1533 | DOI | DOI | MR | Zbl

[14] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 135:2 (1997), 260–278 | DOI | MR | Zbl

[15] I. B. Petrov, N. I. Khokhlov, “Sravnenie TVD limiterov dlia chislennogo resheniia uravnenij dinamiki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniia, Sbornik nauchnyh trudov, 2011, 104–111

[16] P. L. Roe, “Characteristic-Based Schemes for the Euler Equations”, Annual Review of Fluid Mechanics, 18 (1986), 337–365 | DOI | MR | Zbl

[17] V. I. Golubev, “Metodika otobrazheniia i interpretatsii rezultatov polnovolnovykh sejsmicheskikh raschetov”, Trudy MFTI, 6:1 (2014), 54–161