Numerical simulations of boundary layer problems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

At the interface between two media there often appear boundary layers. Singularly perturbed Helmholz equation is typical example. Up-to-date finite difference methods are shown to be capable of effective solving of such problems. Convergence verification procedure is proposed that does not require a priori estimations construction. A superfast algorithm that provides a posteriori asymptotically precise error estimation is described and semi-uniform rectangular grid that resolves all parts of solution is proposed. The algorithm proposed makes it possible to achieve good precisions on moderate grids with number of points $N\sim 200$ in each direction. This algorithm is realized as a program in Matlab environment.
Keywords: singularly perturbed problems, Helmholz equation, Richardson method.
Mots-clés : error estimation
@article{MM_2015_27_11_a3,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Numerical simulations of boundary layer problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {27},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a3/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Numerical simulations of boundary layer problems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 47
EP  - 55
VL  - 27
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a3/
LA  - ru
ID  - MM_2015_27_11_a3
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Numerical simulations of boundary layer problems
%J Matematičeskoe modelirovanie
%D 2015
%P 47-55
%V 27
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a3/
%G ru
%F MM_2015_27_11_a3
A. A. Belov; N. N. Kalitkin. Numerical simulations of boundary layer problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 47-55. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a3/

[1] N. S. Bakhvalov, “K optimizatsii metodov resheniia kraevykh zadach pri nalichii pogranichnogo sloia”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | MR | Zbl

[2] T. Ia. Ershova, “Solution of the Dirichlet problem for a singularly perturbed reaction-diffusion equation in a square on a Bakhvalov grid”, Moscow University computational mathematics and cybernetics, 33:4 (2009), 171–180 | DOI | MR | Zbl

[3] G. I. Shishkin, “Approksimatsiia reshenii singuliarno vozmushchennykh kraevykh zadach s uglovym pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1360–1372 | MR

[4] V. B. Andreev, “On the accuracy of grid approximations to non-smooth solutions of a singularly perturbed reaction-diffusion equation in the square”, Differential equations, 42:7 (2006), 954–966 | DOI | MR | Zbl

[5] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvasiravnomernykh setkakh, Fizmatlit, M., 2005

[6] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989 | MR

[7] N. N. Kalitkin, “An improved factorization of parabolic schemes”, Doklady Mathematics, 71:3 (2005), 480–483 | MR | Zbl

[8] A. A. Boltnev, O. A. Kacher, N. N. Kalitkin, “Logarithmically convergent relaxation count”, Doklady Mathematics, 72:2 (2005), 806–809 | MR | Zbl

[9] N. N. Kalitkin, A. A. Belov, “Analogue of the Richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2 (2013), 596–600 | DOI | MR | Zbl

[10] A. A. Belov, N. N. Kalitkin, “Evolutionary factorization and superfast relaxation count”, Mathematical modeling and simulations, 7:2 (2015), 103–116 | DOI | MR | Zbl

[11] A. A. Belov, N. N. Kalitkin, “Evolutsionnaia faktorizatsiia i sverkhbystryi schet na ustanovlenie”, Keldysh Institute preprints, 2013, 069, 36 pp.