Results of numerical investigation of turulent combustion in jet flow
Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results of numerical calculation based on average Navier-Stocks equations with turbulent viscosity models (SST, $k-\varepsilon$, Secundov's model) and LES have results of modeling of subsonic and supersonic turbulent jets with account of chemical reaction (combustion) of jet species and air are presented. Magnussen’s model and Zeldovich’s model were regarded as turbulent combustion models. The numerical results are compared with experimental data.
Keywords: supersonic jets, combustion model.
Mots-clés : turbulence
@article{MM_2015_27_10_a8,
     author = {N. F. Kudimov and A. V. Safronov},
     title = {Results of numerical investigation of turulent combustion in jet flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {27},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a8/}
}
TY  - JOUR
AU  - N. F. Kudimov
AU  - A. V. Safronov
TI  - Results of numerical investigation of turulent combustion in jet flow
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 117
EP  - 124
VL  - 27
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a8/
LA  - ru
ID  - MM_2015_27_10_a8
ER  - 
%0 Journal Article
%A N. F. Kudimov
%A A. V. Safronov
%T Results of numerical investigation of turulent combustion in jet flow
%J Matematičeskoe modelirovanie
%D 2015
%P 117-124
%V 27
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a8/
%G ru
%F MM_2015_27_10_a8
N. F. Kudimov; A. V. Safronov. Results of numerical investigation of turulent combustion in jet flow. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 117-124. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a8/

[1] F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32 (1994), 1598–1605 | DOI

[2] D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed., DCW Industries, Inc., La Canada, CA 91011, 2006

[3] F. Nicoud, F. Ducros, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor”, Flow, Turbulence and Combustion, 62:3 (1999), 183–200 | DOI | Zbl

[4] B. F. Magnussen, B. H. Hjertager, “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symp. (Int'l.) on Combustion (The Combustion Institute, 1976)

[5] P. L. Roe, “Approximate Rieman problem solvers, parameter vectors, and difference schemes”, J. Comp. Phys., 49:6 (1983), 357–393 | MR

[6] Toshimi Takagi, Hyun-Dong Shin, Akira Ishio, “Properties of Turbulence in Turbulent Diffusion Flames”, Combustion and Flame, 40 (1981), 121–140 | DOI

[7] Yu. M. Lipnitskii, A. V. Safronov, “Numerical simulation of turbulent combustion of subsonic gas jet flows”, Mathematical models and computer simulation, 4:5 (2012), 484–492 | DOI | MR

[8] M. Lesieur, O. Metais, P. Comte, Large-Eddy Simulations of Turbulence, Cambridge University Press, Cambridge, 2005, 219 pp. | MR | Zbl

[9] A. V. Safronov, V. A. Khotulev, “Rezultaty eksperimentalnykh issledovanii sverkhzvukovikh kholodnykh i goriachikh struinikh techenii, istekaiushchikh v zatoplennoe prostranstvo”, Kosmonavtika i raketostroenie, 2009, no. 3(56), 15–23 | MR