Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_10_a4, author = {I. Yu. Tagirova and A. V. Rodionov}, title = {Application of the artificial viscosity for suppressing the carbuncle phenomenon in {Godunov-type} schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {47--64}, publisher = {mathdoc}, volume = {27}, number = {10}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a4/} }
TY - JOUR AU - I. Yu. Tagirova AU - A. V. Rodionov TI - Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes JO - Matematičeskoe modelirovanie PY - 2015 SP - 47 EP - 64 VL - 27 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a4/ LA - ru ID - MM_2015_27_10_a4 ER -
%0 Journal Article %A I. Yu. Tagirova %A A. V. Rodionov %T Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes %J Matematičeskoe modelirovanie %D 2015 %P 47-64 %V 27 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a4/ %G ru %F MM_2015_27_10_a4
I. Yu. Tagirova; A. V. Rodionov. Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 47-64. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a4/
[1] J. von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks”, J. Appl. Phys., 21 (1950), 232–237 | DOI | MR | Zbl
[2] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Comm. Pure Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl
[3] S. K. Godunov, “Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics”, Mat. Sb., 47 (1959), 271–306 | MR | Zbl
[4] S. K. Godunov (ed.), Numerical solution of multi-dimensional problems in gas dynamics, Nauka Press, M., 1976
[5] R. D. Richtmyer, K. W. Morton, Difference methods for initial-value problems, Interscience Publishers, New York, 1967, 405 pp. | MR | Zbl
[6] V. P. Kolgan, “Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics”, Scientific Notes of TsAGI, 3:6 (1972), 68–77
[7] V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finitedifference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230 (2011), 2384–2390 | DOI | MR | Zbl
[8] B. van Leer, “A historical oversight: Vladimir P. Kolgan and his high-resolution scheme”, J. Comput. Phys., 230 (2011), 2378–2383 | DOI | MR | Zbl
[9] A. V. Rodionov, “Complement to the “Kolgan project””, J. Comp. Phys., 231 (2012), 4465–4468 | DOI | MR | Zbl
[10] B. van Leer, “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comp. Phys., 32 (1979), 101–136 | DOI | MR
[11] P. R. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl
[12] A. Lapidus, “A detached shock calculation by second-order finite differences”, J. Comput. Phys., 2 (1967), 154–177 | DOI | Zbl
[13] P. Colella, P. R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI | MR | Zbl
[14] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes, I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[15] A. Harten, B. Enqguist, S. Osher, S. R. Chakravarthy, “Uniformly high-order essentially non-oscillatory schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl
[16] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl
[17] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[18] E. Toro, R. C. Millington, L. A. M. Nejad, “Towards very high order Godunov schemes”, Godunov Methods: Theory and Applications, ed. E. F. Toro, Kluwer Academic/Plenum Publishers, 2001, 905–937 | MR
[19] B. Cockburn, C.-W. Shu, “The Runge–Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems”, J. Comput. Phys., 141 (1998), 199–224 | DOI | MR | Zbl
[20] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Third Edition, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl
[21] V. V. Rusanov, “Calculation of Interaction of Non-Steady Shock Waves with Obstacles”, J. Comput. Math. Phys., 1 (1961), 267–279 | MR
[22] A. Harten, P. D. Lax, B. van Leer, “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws”, SIAM Review, 25:1 (1983), 35–61 | DOI | MR | Zbl
[23] P. L. Roe, “Approximate Riemann Solvers”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[24] E. F. Toro, M. Spruce, W. Speares, “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4 (1994), 25–34 | DOI | Zbl
[25] K. M. Peery, S. T. Imlay, Blunt body flow simulations, AIAA Paper 88-2924, 1988
[26] J. J. Quirk, A contribution to the great Riemann solver debate, ICASE Rep. 92-64, 1992; Int. J. Numer. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl
[27] H. Lin, “Dissipative additions to flux-difference splitting”, J. Comput. Phys., 117 (1995), 20–27 | DOI | Zbl
[28] M. Abouziarov, “On nonlinear stability analysis for finite volume schemes, plane wave instability and carbuncle phenomena explanation”, Second International Symposium on Finite Volumes for Complex Applications, Problems and Perspectives (University of Duisburg, Germany, July 19–22, 1999), 247–252 | MR | Zbl
[29] J. Gressier, J.-M. Moschetta, “Robustness versus accuracy in shock-wave computations”, Int. J. Numer. Meth. Fluids, 33 (2000), 313–332 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[30] J.-Ch. Robinet, J. Gressier, G. Casalis, J.-M. Moschetta, Shock wave instability and the carbuncle phenomenon: same intrinsic origin?, J. Fluid Mech., 417 (2000), 237–263 | DOI | MR | Zbl
[31] M. Pandolfi, D. D'Ambrosio, “Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon”, J. Comput. Phys., 166 (2001), 271–301 | DOI | MR | Zbl
[32] A. V. Karpov, E. I. Vasilev, “The method of the artificial zig-zag grid-lines dumping of numerical fluctuations behind a strong waves in a shock-capturing schemes”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriia 1. Matematika. Fizika, 2002, no. 7, 40–49
[33] S.-S. Kim, C. Kim, O.-H. Rho, S. K. Hong, “Cures for shock instability: Development of a shockstable Roe scheme”, J. Comput. Phys., 185 (2003), 342–374 | DOI | MR | Zbl
[34] S. H. Park, J. H. Kwon, “On the dissipation mechanism of Godunov-type schemes”, J. Comput. Phys., 188 (2003), 524–542 | DOI | MR | Zbl
[35] Y.-X. Ren, “A robust shock-capturing scheme based on rotated Riemann solvers”, Computers and Fluids, 32 (2003), 1379–1403 | DOI | Zbl
[36] M. Dumbser, J.-M. Moschetta, J. Gressier, “A matrix stability analysis of the carbuncle phenomenon”, J. Comput. Phys., 197 (2004), 647–670 | DOI | Zbl
[37] P. Roe, H. Nishikawa, F. Ismail, L. Scalabrin, On carbuncles and other excrescences, AIAA Paper 2005-4872, 2005
[38] V. Elling, Carbuncle as self-simliar entropy solutions, arXiv: ; , 2006 math/0609666v1http://front.math.ucdavis.edu/author/V.Elling
[39] J. A. Menart, S. J. Henderson, Study of the issues of computational aerothermodynamics using a Riemann solver, Report AFRL-RB-WP-TR-2008-3133, 2008, 210 pp.
[40] H. Nishikawa, K. Kitamura, “Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers”, J. Comput. Phys., 227 (2008), 2560–2581 | DOI | MR | Zbl
[41] K. Kitamura, P. Roe, F. Ismail, “An evaluation of Euler fluxes for hypersonic flow computations”, AIAA Journal, 47:1 (2009), 44–53 | DOI | MR
[42] C. Y. Loh, P. C. E. Jorgenson, “Multi-dimensional dissipation for cure of pathological behaviors of upwind scheme”, J. Comput. Phys., 228 (2009), 1343–1346 | DOI | Zbl
[43] Y. Shen, G. Zha, M. A. Huerta, Rotated hybrid low diffusion ECUSP-HLL scheme and its applications to hypersonic flows, AIAA Paper 2011-3345, 2011
[44] K. Huang, H. Wu, H. Yu, D. Yan, “Cures for numerical shock instability in HLLC solver”, Int. J. Numer. Meth. Fluids, 65 (2011), 1026–1038 | DOI | Zbl
[45] B. van Leer, “The development of numerical fluid mechanics and aerodynamics since the 1960s: US and Canada”, Notes on Num. Fluid Mech., 100, eds. E. H. Hirschel et al., Springer-Verlag, Berlin–Heidelberg, 2009, 159–185 | MR
[46] D. Levy, K. G. Powell, B. van Leer, “Use of a rotated Riemann solver for the two-dimensional Euler equations”, J. Comput. Phys., 106 (1993), 201–214 | DOI | Zbl
[47] J. Li, Q. Li, K. Xu, “Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations”, J. Comput. Phys., 230 (2011), 5080–5099 | DOI | MR | Zbl
[48] T. Ohwada, R. Adachi, K. Xu, J. Luo, “On the remedy against shock anomalies in kinetic schemes”, J. Comput. Phys., 255 (2013), 106–129 | DOI | MR
[49] A. V. Rodionov, “Monotonic scheme of the second order of approximation for the con-tinuous calculation of non-equilibrium flows”, USSR Comput. Math. Math. Phys., 27:2 (1987), 175–180 | DOI | MR | Zbl
[50] A. V. Rodionov, I. Iu. Myshkina, V. F. Spiridonov, S. V. Starodubov, K. V. Tsiberev, A. V. Kornev, “Programmnyi modul dlia resheniia dvumernych aerodinamicheskich zadach na osnove iavnoi schemy Godunova–Kolgana–Rodionova”, VANT. Seriia: Matematicheskoe modelirovanie fizicheskich protsessov, 2013, no. 2, 19–36
[51] R. Landshoff, A numerical method for treating fluid flow in the presence of shocks, Technical Report LANL-1930, 1955
[52] V. F. Kuropatenko, “O raznosthych metodach dlia uravnenii gazovoi dinamiki”, Tr. Matem. Instituta AN SSSR, 74, 1966, 107–137 | MR | Zbl
[53] M. L. Wilkins, “Use of artificial viscosity in multidimensional shock wave problems”, J. Comput. Phys., 36 (1980), 281 | DOI | MR | Zbl
[54] R. Christiansen, Godunov Methods on a Staggered Mesh — An Improved Artificial Viscosity, LLNL Report, UCRL-JC-105269, 1991
[55] R. Christiansen, “High resolution hydrodynamics methods using artificial viscosity”, VANT. Seriia: Matematicheskoe modelirovanie fizicheskich protsessov, 1996, no. 4, 89–93 | MR
[56] J. Caramana, M. J. Shashkov, P. P. Whalen, “Formulations of artificial viscosity for multi-dimensional shock wave computations”, J. Comput. Phys., 144 (1998), 70–97 | DOI | MR
[57] J. C. Campbell, M. J. Shashkov, LA-UR-00-2290, 2000
[58] S. M. Bachrach, Iu. P. Glagoleva, M. S. Samigulin i dr., “Raschet gazodinamicheskich techenii na osnove metoda kontsentratsii”, DAN SSSR, 257:3 (1981), 566 | Zbl
[59] W. D. Schulz, “Tensor artificial viscosity for numerical hydrodynamics”, J. Math. Phys., 5 (1964), 133–138 | DOI | MR | Zbl
[60] A. M. Stenin, E. A. Soloveva, “Matritsa iskusstvennych vyazkostei dlia dvumernoi lagranzhevoi gasodinamiki, sposobstvuiushchaia umensheniiu entropiinogo sleda v chislennych raschetach”, VANT, seriia: Matematicheskoe modelirovanie fizicheskich protsessov, 2010, no. 1, 3–18
[61] W. F. Noh, “Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux”, J. Comput. Phys., 72 (1987), 78–120 | DOI | Zbl
[62] L. I. Sedov, Similarity and dimensional methods in mechanics, Tenth edition, CRC Press, 1993 | MR
[63] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 | DOI | MR | Zbl
[64] A. V. Rodionov, I. Iu. Tagirova, “Iskusstvennaia viazkost v schemach tipa Godunova kak metod podavleniia «karbunkul»-neustoichivosti”, VANT, seriia: Matematicheskoe modelirovanie fizicheskich protsessov, 2015, no. 2, 3–11