Modification of the Cabaret scheme ensuring its high accuracy on local extrema
Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

It's shown that the standard flux correction which is necessary for monotonicity of the CABARET scheme leads to reduction of its accuracy near local extrema. Modified flux correction is proposed that ensures the strong monotonicity of the CABARET scheme for Courant numbers $r\in (0,0.5]$ and simultaneously preserves its high accuracy near local extrema. Test computations of discontinuous solutions of nonlinear advection equation are presented that illustrate advantages of modified scheme.
Keywords: CABARET finite difference scheme, strong monotonicity, flux corrected transport.
@article{MM_2015_27_10_a2,
     author = {N. A. Zyuzina and V. V. Ostapenko},
     title = {Modification of the {Cabaret} scheme ensuring its high accuracy on local extrema},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {27},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/}
}
TY  - JOUR
AU  - N. A. Zyuzina
AU  - V. V. Ostapenko
TI  - Modification of the Cabaret scheme ensuring its high accuracy on local extrema
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 21
EP  - 31
VL  - 27
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/
LA  - ru
ID  - MM_2015_27_10_a2
ER  - 
%0 Journal Article
%A N. A. Zyuzina
%A V. V. Ostapenko
%T Modification of the Cabaret scheme ensuring its high accuracy on local extrema
%J Matematičeskoe modelirovanie
%D 2015
%P 21-31
%V 27
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/
%G ru
%F MM_2015_27_10_a2
N. A. Zyuzina; V. V. Ostapenko. Modification of the Cabaret scheme ensuring its high accuracy on local extrema. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 21-31. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/

[1] V. M. Goloviznin, A. A. Samarskii, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100

[2] V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[3] B. L. Rozhdestvenskii, N. N. Ianenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978

[4] A. G. Kulikovskii, N. V. Pogorelov, F. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[5] V. M. Goloviznin, “Balansno-kharakteristicheskii metod chislennogo resheniia uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6

[6] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[7] V. V. Ostapenko, “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[8] V. V. Ostapenko, “On monotonicity of difference schemes”, Siberian Mathematical Journal, 39:5 (1998), 959–972 | DOI | MR | Zbl

[9] V. V. Ostapenko, “On strong monotonicity of three-point difference schemes”, Siberian Mathematical Journal, 39:6 (1998), 1174–1183 | DOI | MR | Zbl

[10] X. Liu, E. Tadmor, “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl

[11] V. V. Ostapenko, “On the strong monotonicity of the CABARET scheme”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl

[12] S. A. Karabasov, V. M. Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI

[13] S. A. Karabasov, P. S. Berloff, V. M. Goloviznin, “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI

[14] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[15] N. A. Zyuzina, V. V. Ostapenko, “Modification of the CABARET scheme ensuring its strong monotonicity and high accuracy on local extrema”, Doklady Mathematics, 90:1 (2014), 453–457 | DOI | DOI | MR | Zbl

[16] V. V. Ostapenko, “O postroenii raznostnykh skhem povyshennoi tochnosti dlia skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiziki, 40:12 (2000), 1857–1874 | MR | Zbl

[17] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[18] G. Jiang, C. Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[19] R. Borges, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. Comp. Phys., 227 (2008), 3191–3211 | DOI | MR | Zbl

[20] S. A. Karabasov, “On the powerof second-order accurate numerical methods for model problems of gas- and hydrodynamics”, Mathematical Models and Computer Simulations, 3:1 (2011), 92–112 | DOI | Zbl

[21] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity of two-layer in time CABARET scheme”, Mathematical Models and Computer Simulations, 5:2 (2013), 180–189 | DOI | MR | MR