Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_10_a2, author = {N. A. Zyuzina and V. V. Ostapenko}, title = {Modification of the {Cabaret} scheme ensuring its high accuracy on local extrema}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--31}, publisher = {mathdoc}, volume = {27}, number = {10}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/} }
TY - JOUR AU - N. A. Zyuzina AU - V. V. Ostapenko TI - Modification of the Cabaret scheme ensuring its high accuracy on local extrema JO - Matematičeskoe modelirovanie PY - 2015 SP - 21 EP - 31 VL - 27 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/ LA - ru ID - MM_2015_27_10_a2 ER -
N. A. Zyuzina; V. V. Ostapenko. Modification of the Cabaret scheme ensuring its high accuracy on local extrema. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 21-31. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a2/
[1] V. M. Goloviznin, A. A. Samarskii, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100
[2] V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[3] B. L. Rozhdestvenskii, N. N. Ianenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978
[4] A. G. Kulikovskii, N. V. Pogorelov, F. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[5] V. M. Goloviznin, “Balansno-kharakteristicheskii metod chislennogo resheniia uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6
[6] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[7] V. V. Ostapenko, “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl
[8] V. V. Ostapenko, “On monotonicity of difference schemes”, Siberian Mathematical Journal, 39:5 (1998), 959–972 | DOI | MR | Zbl
[9] V. V. Ostapenko, “On strong monotonicity of three-point difference schemes”, Siberian Mathematical Journal, 39:6 (1998), 1174–1183 | DOI | MR | Zbl
[10] X. Liu, E. Tadmor, “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl
[11] V. V. Ostapenko, “On the strong monotonicity of the CABARET scheme”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl
[12] S. A. Karabasov, V. M. Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[13] S. A. Karabasov, P. S. Berloff, V. M. Goloviznin, “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[14] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[15] N. A. Zyuzina, V. V. Ostapenko, “Modification of the CABARET scheme ensuring its strong monotonicity and high accuracy on local extrema”, Doklady Mathematics, 90:1 (2014), 453–457 | DOI | DOI | MR | Zbl
[16] V. V. Ostapenko, “O postroenii raznostnykh skhem povyshennoi tochnosti dlia skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiziki, 40:12 (2000), 1857–1874 | MR | Zbl
[17] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[18] G. Jiang, C. Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[19] R. Borges, M. Carmona, B. Costa, W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. Comp. Phys., 227 (2008), 3191–3211 | DOI | MR | Zbl
[20] S. A. Karabasov, “On the powerof second-order accurate numerical methods for model problems of gas- and hydrodynamics”, Mathematical Models and Computer Simulations, 3:1 (2011), 92–112 | DOI | Zbl
[21] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity of two-layer in time CABARET scheme”, Mathematical Models and Computer Simulations, 5:2 (2013), 180–189 | DOI | MR | MR