Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_10_a1, author = {I. V. Abalakin and N. S. Zhdanova and T. K. Kozubskaya}, title = {The implementation of immersed boundary method for simulation of external flow on unstructured meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {5--20}, publisher = {mathdoc}, volume = {27}, number = {10}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a1/} }
TY - JOUR AU - I. V. Abalakin AU - N. S. Zhdanova AU - T. K. Kozubskaya TI - The implementation of immersed boundary method for simulation of external flow on unstructured meshes JO - Matematičeskoe modelirovanie PY - 2015 SP - 5 EP - 20 VL - 27 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a1/ LA - ru ID - MM_2015_27_10_a1 ER -
%0 Journal Article %A I. V. Abalakin %A N. S. Zhdanova %A T. K. Kozubskaya %T The implementation of immersed boundary method for simulation of external flow on unstructured meshes %J Matematičeskoe modelirovanie %D 2015 %P 5-20 %V 27 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a1/ %G ru %F MM_2015_27_10_a1
I. V. Abalakin; N. S. Zhdanova; T. K. Kozubskaya. The implementation of immersed boundary method for simulation of external flow on unstructured meshes. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 5-20. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a1/
[1] R. Mittal, G. Iaccarino, “Immersed boundary Methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl
[2] C. S. Peskin, “Flow patterns around heart valves: a numerical method”, J. Comput. Phys., 10:2 (1972), 252–271 | DOI | MR | Zbl
[3] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Mathematical Models and Computer Simulations, 6:6 (2014), 612–621 | DOI | MR | Zbl
[4] O. Boiron, G. Chiavassa, R. Donat, “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Computers and Fluids, 38:3 (2009), 703–714 | DOI | MR | Zbl
[5] E. Brown-Dymkoski, N. Kasimov, O. V. Vasilyev, “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows”, J. Comput. Phys., 262 (2014), 344–357 | DOI | MR
[6] E. Feireisl, J. Neustupa, J. Stebel, “Convergence of a Brinkman-type penalization for compressible fluid flows”, J. Differential Equations, 250:1 (2011), 596–606 | DOI | MR | Zbl
[7] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New-York, 2003, 273 pp. | MR | Zbl
[8] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISETTE dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125 | MR
[9] I. V. Abalakin, T. K. Kozubskaia, “Skhema na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlia resheniia zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136 | MR
[10] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems”, International Journal of Aeroacoustics, 13:3–4 (2014), 207–234
[11] M. Bergmann, A. Iollo, “Modeling and simulation of fish-like swimming”, J. Comput. Phys., 230:2 (2011), 329–348 | DOI | MR | Zbl
[12] R. D. Henderson, “Nonlinear dynamics and pattern formation in turbulent wake transition”, J. Fluid Mech., 352 (1997), 65–112 | DOI | MR | Zbl
[13] I. V. Abalakin, A. V. Gorobets, N. S. Zhdanova, T. K. Kozubskaia, “Primenenie metoda Brinkmana shtrafnykh funktsii dlia chislennogo modelirovaniia obtekaniia prepiatstvii viazkim szhimaemym gazom”, Keldysh Institute preprints, 2014, 011, 14 pp. | Zbl
[14] I. V. Abalakin, N. S. Zhdanova, T. K. Kozubskaia, “Immersed boundary method as applied to the simulation of external aerodynamics problems with various boundary conditions”, Doklady Mathematics, 91:2 (2015), 178–181 | DOI | DOI | Zbl