Numerical modeling of thermal stabilization of filter ground
Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 111-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the numerical simulation of the thermal stabilization (artificial freezing) filter soil around the base of the mine. Mathematical model based on the classical model of Stephen, which describes the process of heat transfer with phase change with the filter in a porous medium, and the system of equations for the temperature and pressure. Fictitious domain method is used for numerical solution of the resulting problem. Discretization of the system of equations is the finite element method, which is implemented in a software package FEniCSon high performance computing clusters. The numerical results are given and discussed.
Keywords: heat transfer, phase change, Stefan problem, fictitious domain method, finite element method, computing cluster.
Mots-clés : filtration
@article{MM_2014_26_9_a7,
     author = {P. N. Vabishchevich and M. V. Vasilyeva and N. V. Pavlova},
     title = {Numerical modeling of thermal stabilization of filter ground},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--125},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_9_a7/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - M. V. Vasilyeva
AU  - N. V. Pavlova
TI  - Numerical modeling of thermal stabilization of filter ground
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 111
EP  - 125
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_9_a7/
LA  - ru
ID  - MM_2014_26_9_a7
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A M. V. Vasilyeva
%A N. V. Pavlova
%T Numerical modeling of thermal stabilization of filter ground
%J Matematičeskoe modelirovanie
%D 2014
%P 111-125
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_9_a7/
%G ru
%F MM_2014_26_9_a7
P. N. Vabishchevich; M. V. Vasilyeva; N. V. Pavlova. Numerical modeling of thermal stabilization of filter ground. Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 111-125. http://geodesic.mathdoc.fr/item/MM_2014_26_9_a7/

[1] Khrustalev L. N., Nikiforov V. V., Voitkovskii K. F., Stabilizatsiya vechnomerzlykh gruntov v osnovanii zdanii, Nauka. Sib. otd-nie, 1990

[2] Khakimov Kh. R., Voprosy teorii i praktiki iskusstvennogo zamorazhivaniya gruntov, Izd-vo Akademii nauk SSSR, 1957

[3] Andersland O. B., Ladanyi B., An introduction to frozen ground engineering, Chapman Hall, 1994

[4] Harris J. S., Ground Freezing in Practice, Thomas Telford Limited, 1995

[5] Mankovskii G. I., Zamorazhivanie gornykh porod pri prokhodke stvolov shakht, Izd-vo Akademii nauk SSSR, 1961

[6] Mankovskii G. I., Spetsialnye sposoby sooruzheniya stvolov shakht, Nauka, 1965

[7] Zilberbord A. F., Teplovoi rezhim shakht v oblasti rasprostraneniya mnogoletnemerzlykh gornykh porod, Izd-vo Akademii nauk SSSR, 1963

[8] Ivanov N. S., Teplo- i massoperenos v merzlykh gornykh porodakh, Nauka, 1969

[9] Esch D. C., Thermal analysis, construction, and monitoring methods for frozen ground, American Society of Civil Engineers, 2004

[10] Alexiades V., Solomon A. D., Mathematical modeling of melting and freezing processes, Hemisphere Publishing Corporation, 1993

[11] Melamed V. G., Teplo- i massoobmen v gornykh porodakh pri fazovykh perekhodakh, Nauka, 1980

[12] Vasilev V. I., Maksimov A. M., Petrov E. E., Tsypkin G. G., Teplomassoperenos v promerzayuschikh i protaivayuschikh gruntakh, Nauka, M., 1996, 224 pp.

[13] Tsypkin G. G., Techeniya s fazovymi perekhodami v poristykh sredakh, Fizmatlit, 2009

[14] Khokholov Yu. A., Kurilko A. S., Popov V. I., Elshin V. K., “Prognoz sostoyaniya gruntov pod osnovaniem fundamentov koprov rudnika «Udachnyi» s uchetom ikh zasolennosti”, Gornyi informatsionno-analiticheskii byulleten, 2010, no. 6, 321–328 | Zbl

[15] Vasileva M. V., Pavlova N. V., “Chislennoe reshenie nestatsionarnoi zadachi iskusstvennogo zamorazhivaniya filtruyuschikh gruntov”, Matematicheskie zametki YaGU, 17:2 (2010), 113–123 | Zbl

[16] Vabischevich P. N., Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, Izd-vo Mosk. un-ta, 1991

[17] Logg F., Mardal K.-A., Wells G. N. (eds.), Automated Solution of Partial Differential Equations by Finite Element Method: The FEniCS Book, Springer, 2011 | MR

[18] Rubinshtein L. I., Problema Stefana, Zvaigzne, 1967

[19] Vabischevich P. N., Samarskii A. A., Vychislitelnaya teploperedacha, Editorial URSS, 2003

[20] Vabischevich P. N., Chislennye metody resheniya zadach so svobodnoi granitsei, Izd-vo Mosk. un-ta, 1987

[21] Samarskii A. A., Vabishchevich P. N., Iliev O. P., Churbanov A. G., “Numerical simulation of convection/diffusion phase change problems — a review”, International Journal of Heat and Mass Transfer, 36:17 (1993), 4095–4106 | DOI

[22] Belhamadia Y., Kane A., Fortin A., “An enhanced mathematical model for phase change problems with natural convection”, Int. J. Numer. Anal. Model., Ser. B, 3:2 (2012), 192–206 | MR | Zbl

[23] Belhamadia Y., Kane A., Fortin A., “A fixed-grid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region”, International Journal of Heat and Mass Transfer, 45:24 (2002), 4881–4898 | DOI

[24] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations, Springer, 1994 | MR | Zbl

[25] Brenner S. C., Scott L. R., The mathematical theory of finite element methods, Springer, 2008 | MR

[26] Samarskii A. A., Moiseenko B. D., “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 5:5 (1965), 816–827 | MR

[27] Saad Y., Iterative methods for sparse linear systems, Society for Industrial Mathematics, 2003 | MR

[28] Software package Netgen, http://sourceforge.net/apps/mediawiki/netgen-mesher/

[29] Software package FEniCS, http://fenicsproject.org/

[30] Software package Paraview, http://www.paraview.org/