Evolutional factorization and superfast relaxation count
Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 47-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In finite-difference solution of multi-dimensional elliptic equations the systems of linear algebraic equations with strongly rarefied matrices of enormous sizes appear. They are solved by iteratonal methods with slow convergence. For rectangular nets, variable coefficients and net steps much more fast method is proposed. In case of finite difference schemes for parabolic equations an efficient method, called evolutional factorization, is built. For elliptic equations relaxation count for evolutionally factorized schemes is proposed. This iterational method has logarythmic convergence. A set of steps, that practically optimizes the method's convergence, and Richardson-like procedure of steps regulation are proposed. The procedure delivers an a posteriori asymptotically precise estimation for the iterational process error. Such estimations were not known before.
Keywords: evolutional factorization, logarythmic relaxation count.
@article{MM_2014_26_9_a3,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Evolutional factorization and superfast relaxation count},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_9_a3/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Evolutional factorization and superfast relaxation count
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 47
EP  - 64
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_9_a3/
LA  - ru
ID  - MM_2014_26_9_a3
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Evolutional factorization and superfast relaxation count
%J Matematičeskoe modelirovanie
%D 2014
%P 47-64
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_9_a3/
%G ru
%F MM_2014_26_9_a3
A. A. Belov; N. N. Kalitkin. Evolutional factorization and superfast relaxation count. Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 47-64. http://geodesic.mathdoc.fr/item/MM_2014_26_9_a3/

[1] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[3] Fadeev D. K., Fadeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963

[4] Boltnev A. A., Kalitkin N. N., Kacher O. A., “Logarifmicheski skhodyaschiisya schet na ustanovlenie”, Doklady Akademii Nauk, 404:2 (2005), 177–180 | MR | Zbl

[5] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka-Sibirskoe otdelenie, Novosibirsk, 1967 | MR

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[7] Kalitkin N. N., “Uluchshennaya faktorizatsiya parabolicheskikh skhem”, Doklady Akademii Nauk, 402:4 (2005), 467–471 | MR

[8] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[9] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Doklady Akademii Nauk, 434:4 (2010), 464–467 | Zbl

[10] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matematicheskoe modelirovanie, 23:2 (2011), 3–26 | MR