Numerical solution of a charge transport problem in DG-MOSFET
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 126-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose and describe in detail a new effective numerical algorithm for finding the stationary solutions of charge transport problem in DG-MOSFET transistor. For mathematical description of charge transport process a hydrodynamical MEP model is used. It is worth noting that this model is a set of nonlinear PDE's with small parameters and specific boundary conditions corresponding to DG-MOSFET. It makes the computational process much more complicated. The aim of this work is the construction and the realization of effective numerical algorithm for solving such kind of difficult numerical problems. The proposed algorithm is based on the stabilization method, the application of regularized smoothing operators and ideas of schemes without saturation.
Keywords: hydrodynamical model, DG-MOSFET, stationary solution, stabilization method, nonstationary regularization, algorithm without saturation, spline-function, sweep method.
Mots-clés : interpolation polynomial
@article{MM_2014_26_8_a8,
     author = {A. M. Blokhin and B. V. Semisalov},
     title = {Numerical solution of a charge transport problem in {DG-MOSFET}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {126--148},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a8/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - B. V. Semisalov
TI  - Numerical solution of a charge transport problem in DG-MOSFET
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 126
EP  - 148
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a8/
LA  - ru
ID  - MM_2014_26_8_a8
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A B. V. Semisalov
%T Numerical solution of a charge transport problem in DG-MOSFET
%J Matematičeskoe modelirovanie
%D 2014
%P 126-148
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a8/
%G ru
%F MM_2014_26_8_a8
A. M. Blokhin; B. V. Semisalov. Numerical solution of a charge transport problem in DG-MOSFET. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 126-148. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a8/

[1] Babenko K. I., Osnovy chislennogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2002

[2] Blokhin A. M., Alaev R. D., Integraly energii i ikh prilozheniya k issledovaniyu ustoichivosti raznostnykh skhem, Novosibirsk, 1993 | MR

[3] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl

[4] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl

[5] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl

[6] Blokhin A. M., Bushmanov R. S., Rudometova et al., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl

[7] Romano V., “2D Numerical Simulation of the MEP Energy-Transport Model with a Finite Difference Scheme”, J. Comp. Phys., 221 (2007), 439–468 | DOI | MR | Zbl

[8] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Mat. modelirovanie, 21:4 (2009), 15–34 | MR | Zbl

[9] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D Simulation of a Silicon MESFET with a Hydrodynamical Model Based on the Maximum Entropy Principle”, SIAM J. Sci. Comp., 31:3 (2009), 2015–2046 | DOI | MR | Zbl

[10] Blokhin A. M., Ibragimova A. S., “1D numerical simulation of the MEP mathematical model in the ballistic diode problem”, J. of Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl

[11] Blokhin A. M., Boyarsky S. A., Semisalov B. V., “On an approach to the construction of difference schemes for the moment equations of charge transport in semiconductors”, Le Matematiche, LXIV:I (2009), 77–91 | MR | Zbl

[12] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnykh algoritmov dlya zadachi o ballisticheskom diode”, Vych. mat. i mat. fiz., 50:1 (2010), 188–208 | MR | Zbl

[13] Blokhin A. M., Ibragimova A. S., “K voprosu o vychislenii elektricheskogo potentsiala dlya 2D kremnievogo tranzistora s nanokanalom iz oksida kremniya”, Mat. modelirovanie, 22:9 (2010), 79–94 | MR | Zbl

[14] Blokhin A. M., Semisalov B. V., “Konstruirovanie odnogo klassa vychislitelnykh skhem v zadache o ballisticheskom diode”, Mat. modelirovanie, 22:7 (2010), 3–21 | MR | Zbl

[15] Blokhin A. M., Semisalov B. V., “Design of numerical algorithms for the problem of charge transport in a 2D silicon MOSFET transistor with a silicon oxide nanochannel”, J. Phys.: Conf. Ser., 291 (2011), 012016

[16] Blokhin A. M., Semisalov B. V., Ibragimova A. S., Chislennyi analiz zadach perenosa zaryada v poluprovodnikovykh ustroistvakh, Palmarium Academic Publishing, Saarbrucken, Germany, 2012

[17] Haiyan Jiang, Wei Cai, “Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET”, J. Comp. Phys., 229 (2010), 4461–4475 | DOI | Zbl

[18] Lab C., Caussignac P., “An energy-transport model for semiconductor heterostructure devices: application to AlGaAs/GaAs MODFETs”, COMPEL, 18:1 (1999), 61–76 | DOI | Zbl

[19] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Fizmatgiz, M., 1962, 620 pp. | MR

[20] Samarskii A. A., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975, 350 pp. | MR

[21] Blokhin A. M., Semisalov B. V., “Odin algoritm poiska raspredeleniya elektricheskogo potentsiala v tranzistore DG-MOSFET”, Vych. mat. i mat. fiz., 53:6 (2013), 979–1003 | DOI | Zbl

[22] Blokhin A. M., Iordanidi A. A., Merazhov I. Z., Chislennoe issledovanie odnoi gidrodinamicheskoi modeli perenosa zaryada v poluprovodnikakh, Preprint No 33, RAN. Sib. otd-nie. In-t matematiki, Novosibirsk, 1996, 51 pp.

[23] Pinchukov V. I., “Adaptive operators of smoothness of arbitrary order”, Comp. Tech., Proc. ICT SD RAS, 2, no. 6, 1993, 232–245

[24] Pinchukov V. I., “Algorithms monotonization of schemes of advanced exactness for equations of type”, Simulation in Mechanics, Proc. IATM SD RAS, 7(24), no. 2, 1993, 150–159 | MR