Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_8_a5, author = {A. S. Kozelkov and V. V. Kurulin and E. S. Tyatyushkina and O. L. Puchkova}, title = {Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--96}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a5/} }
TY - JOUR AU - A. S. Kozelkov AU - V. V. Kurulin AU - E. S. Tyatyushkina AU - O. L. Puchkova TI - Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids JO - Matematičeskoe modelirovanie PY - 2014 SP - 81 EP - 96 VL - 26 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a5/ LA - ru ID - MM_2014_26_8_a5 ER -
%0 Journal Article %A A. S. Kozelkov %A V. V. Kurulin %A E. S. Tyatyushkina %A O. L. Puchkova %T Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids %J Matematičeskoe modelirovanie %D 2014 %P 81-96 %V 26 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a5/ %G ru %F MM_2014_26_8_a5
A. S. Kozelkov; V. V. Kurulin; E. S. Tyatyushkina; O. L. Puchkova. Application of the detached eddy simulation model for viscous incompressible turbulent flow simulations on unstructured grids. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 81-96. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a5/
[1] Mozer D., Kim J., Mansour N. N., “DNS of Turbulent Channel Flow”, Phys. Fluids, 11 (1999), 943–945 | DOI
[2] Lesieur M., Turbulence in Fluids, Springer, 2008 | Zbl
[3] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008
[4] Snegirev A. Yu., Vysokoproizvoditelnye vychisleniya v fizike. Chislennoe modelirovanie turbulentnykh techenii, Izd-vo politekhnicheskogo universiteta, Sankt-Peterburg, 2009
[5] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, v dvukh tomakh, Mir, M., 1991
[6] Bystrov Yu. A., Isaev S. A., Kudryavtsev N. A., Leontev A. I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub, «Sudostroenie», S.-Peterburg, 2005
[7] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmatlit, M., 2010
[8] Spalart P. R., “Strategies for turbulence modeling and simulations”, Heat Fluid Flow, 21 (2000), 252–263 | DOI
[9] Spalart P. R., Jou W. H., Strelets M., Allmaras S. R., “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach”, Proceedings of first AFOSR international conference on DND/LES (1997)
[10] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Proceedings of Euromech Coll. Les of complex transitional and turbulent flows (Munich, Germany, 2000), Advances in LES of Complex Flows, 65, Kluwer, Dordrecht, 2002, 239–254 | DOI | Zbl
[11] Strelets M. Kh., Travin A. K., Shur M. L., “Primenenie metoda modelirovaniya otsoedinennykh vikhrei dlya rascheta gidrodinamiki i teploobmena v otryvnykh turbulentnykh potokakh”, Trudy 3-i Rossiiskoi konferentsii po teploobmenu (2002)
[12] Zhai Z., Zhang Z., Zhang W. et al., “Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: summary of prevent turbulence models”, HVAC Research, 13 (2007)
[13] Zaitsev D. K., Schur N. A., “Primenenie metoda deformiruemykh setok dlya modelirovaniya avto-kolebanii tsilindra v odnorodnom potoke”, Nauchno-tekhnicheskie vedomosti SPbGTU, 2006, no. 5/1 (47), 15–22
[14] Revell A., Craft T., Laurence D., “Turbulence Modelling of Strongly Detached Unsteady Flows: The Circular Cylinder”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 97 (2008), 279–288 | DOI | MR
[15] Chevalier M., Peng S. H., “Detached Eddy Simulation of Turbulent Flow in a Highly Offset Intake Diffuser”, Progress in Hybrid RANS-LES Modelling, 111 (2010), 111–121 | DOI
[16] Zaitsev D. K., Smirnov E. M., Schur N. A., Chislennoe issledovanie turbulentnykh techenii okolo koleblyuschikhsya tel na osnove trekhmernykh vikhrerazreshayuschikh podkhodov, YuUrGU, 2008, 599 pp.
[17] Hasse C. et al., “Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder”, Flow Turbulence Combust, 83 (2009), 1–20 | DOI | Zbl
[18] Travin A., Shur M., Strelets M., Spalart P. R., “Detached-Eddy Simulations past a Circular Cylinder”, Flow. Turb. Comb., 63 (2000), 293–313 | DOI | Zbl
[19] Sohail A., Prof. Chao Y., Husain M., “Comparison of Detached Eddy Simulations with Turbulence Modeling”, International Journal of Mechanical and Materials Engineering, 2:1 (2011) | MR
[20] Morgut M., Nobile E., “Influence of grid type and turbulence model on the numerical prediction of the flow around marine propellers working in uniform inflow”, Ocean Engineering, 42 (2012), 26–34 | DOI
[21] Weinman K. A., Valentino M., “Comparison of Hybrid RANS-LES Calculations within the Framework of Compressible and Incompressible Unstructured Solvers”, Progress in Hybrid RANS-LES Modelling, 2010, 329–338 | DOI
[22] Strelets M., 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-0879 (Reno, NV, 2001)
[23] Ubbink O., Numerical prediction of two fluid systems with sharp interfaces, Department of Mechanical Engineering Imperial College of Science, Technology Medicine, 1997
[24] Gaskell P. H., “Curvature-compensated convective-transport — SMART. A new boundedness-preserving transport algorithm”, Int. J. Numer. Methods Fluids, 8 (1988), 617–641 | DOI | MR | Zbl
[25] Jasak H., Weller H. G., Gosman A. D., “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, International journal for numerical methods in fluids, 31 (1999), 431–449 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[26] Salvetti M. V. et al., “Numerical method for large-eddy simulation on unstructured grids”, Proceedings of Contactforum KVAB (Flamish Science Academy) Modern Techniques for Solving Partial Differential Equations (19 June 2008, Bruxelles, Belgium)
[27] Kapadia S., Roy S., Wurtzler K., Detached eddy simulation over a reference Ahmed car model, AIAA paper No 2003-0857, 2003
[28] Claus M. P., Morton S. A., Cummings R. M., Bury Y., DES Turbulence Modeling on the C-130 Comparison between Computational and Experimental Results, AIAA 2005-0884, 2005
[29] Ludeke H., Leicher S., “Unsteady CFD Analysis of a Delta Wing Fighter Configuration by Delayed Detached Eddy Simulation”, Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 97, 2008
[30] Peng S. H., Leicher S., “DES and Hybrid RANS-LES Modelling of Unsteady Pressure Oscillations and Flow Features in a Rectangular Cavity”, Advances in Hybrid RANS-LES Modelling, 2008, 132–141 | DOI | MR
[31] Morton S. A., Forsythe J. R., Squires K. D., Wurtzler K. E., “Assessment of unstructed grids for detached-eddy simulation of high Reynolds number separated flows”, 8th ISGG Conf. (Honolulu, June 2002)
[32] Ferziger J. H., Peric M., Computational Method for Fluid Dynamics, Springer-Verlag, New York, 2002 | MR | Zbl
[33] Jasak H., Error Analysis and Estimation for the finite volume method with applications to fluid flows. Thesis submitted for the degree of doctor, Department of Mechanical Engineering, Imperial College of Science, 1996
[34] Spalart P. R., Young-Person's guide to detached-eddy simulation grids, Tech. Rep. NASA/CR-2001-211032, NASA, Langley Research Center, 2001
[35] Spalart P. R., Strelets M., Travin A., “Expectations in the Wall Region of a Large-Eddy Simulation”, Quality and Reliability of Large-Eddy Simulations, v. III, ERCOFTAC Series, 12, 2008, 189–191
[36] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | Zbl
[37] Leonard B. P., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comput. Methods Appl. Mech/Eng., 9 (1979), 59–98 | DOI | MR
[38] Pogosyan M. A., Savelskikh E. P., Strelets D. Yu., Kornev A. V., “Otechestvennye superkompyuternye tekhnologii v aviatsionnoi promyshlennosti”, Nauka i tekhnologii v promyshlennosti, 2012, no. 2, 26–35
[39] Kozelkov A. S., Deryugin Yu. N., Zelenskii D. K. i dr., “Mnogofunktsionalnyi paket programm LOGOS dlya rascheta zadach gidrodinamiki i teplomassoperenosa na mnogoprotsessornykh EVM: bazovye tekhnologii i algoritmy”, Supervychisleniya i matematicheskoe modelirovanie, Tr. XII Mezhd. seminara (Sarov, 11–15 oktyabrya 2010 g.), RFYaTs-VNIIEF, Sarov, 2011, 215–230
[40] Comte-Bellot G., Corrsin S., “Simple Eulerian time correlation of full- and narrowband velocity signals in grid-generated “isotropic” turbulence”, Journal of Fluid Mechanics, 48 (1971), 273–337 | DOI
[41] Zaikov L. A., Strelets M. Kh., Shur M. L., “Sravnenie vozmozhnostei differentsialnykh modelei turbulentnosti s odnim i dvumya uravneniyami pri raschete techenii s otryvom i prisoedineniem. Techenie v kanalakh s obratnym ustupom”, Teplofizika vysokikh temperatur, 34:35 (1996), 724–736
[42] Gritskevich M. S., Garbaruk A. V., Schutze J., Menter F. R., “Development of DDES and IDDES Formulations for the $k$-$\omega$ Shear Stress Transport Model”, Flow Turbulence Combust, 2011
[43] Vogel J. C., Eaton J. K., “Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step”, Journal of Heat Transfer, 107 (1985), 922–929 | DOI
[44] Pozarlik A. K. et al., “Heat transfer in a recirculation zone at steady-state and oscillating conditions — the back facing step test case”, 5th European Thermal-Sciences Conf. (The Netherlands, 2008)