Regarding the transition operator of the steepest descent
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition and found of the reverse transition operator of steepest descent are presented. Singular set of the direct transition operator method is constructed. It's demonstrated that it is the union of countable number of non-empty disjoint surface by the $C^\infty$ smoothness class, which are derived from some of the polyhedra by means of the revers transition operator.
Keywords: method of steepest descent, the transition operator, rate of convergence, recurrent operators, set of degenerating points.
@article{MM_2014_26_8_a4,
     author = {P. F. Zhuk and A. A. Musina},
     title = {Regarding the transition operator of the steepest descent},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/}
}
TY  - JOUR
AU  - P. F. Zhuk
AU  - A. A. Musina
TI  - Regarding the transition operator of the steepest descent
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 65
EP  - 80
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/
LA  - ru
ID  - MM_2014_26_8_a4
ER  - 
%0 Journal Article
%A P. F. Zhuk
%A A. A. Musina
%T Regarding the transition operator of the steepest descent
%J Matematičeskoe modelirovanie
%D 2014
%P 65-80
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/
%G ru
%F MM_2014_26_8_a4
P. F. Zhuk; A. A. Musina. Regarding the transition operator of the steepest descent. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/

[1] Fletcher R., “A limited memory steepest descent method”, Math. Programming. Ser. A, 135 (2012), 413–436 | DOI | MR | Zbl

[2] Kees van den Doel, Uri Ascher, The chaotic nature of faster gradient descent methods, Department of Computer Science, University of British Columbia, Canada, 2011, 27 pp. | MR

[3] Narushima Y., Wakamatsu T., Yabe H., “Extended Barzilai–Borwein method for unconstrained minimization problems”, Pacific Journal of Optimization, 6:3 (2010), 591–613 | MR | Zbl

[4] Andretta M., Birgin E. G., Martinez J. M., “Partial spectral projected gradient method with active-set strategy for linearly constrained optimization”, Numer. Algorithms, 53:1 (2010), 23–52 | DOI | MR | Zbl

[5] Barzilai J., Borwein J. M., “Two-point step size gradient methods”, IMA Journal of Numerical Analysis, 8 (1988), 141–148 | DOI | MR | Zbl

[6] Akaike H., “On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method”, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 1–16 | DOI | MR | Zbl

[7] Forsythe G. E., “On the asymptotic directions of the s-dimensional optimum gradient method”, Numerische Mathematik, 11 (1968), 57–76 | DOI | MR | Zbl

[8] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR