Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_8_a4, author = {P. F. Zhuk and A. A. Musina}, title = {Regarding the transition operator of the steepest descent}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--80}, publisher = {mathdoc}, volume = {26}, number = {8}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/} }
P. F. Zhuk; A. A. Musina. Regarding the transition operator of the steepest descent. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a4/
[1] Fletcher R., “A limited memory steepest descent method”, Math. Programming. Ser. A, 135 (2012), 413–436 | DOI | MR | Zbl
[2] Kees van den Doel, Uri Ascher, The chaotic nature of faster gradient descent methods, Department of Computer Science, University of British Columbia, Canada, 2011, 27 pp. | MR
[3] Narushima Y., Wakamatsu T., Yabe H., “Extended Barzilai–Borwein method for unconstrained minimization problems”, Pacific Journal of Optimization, 6:3 (2010), 591–613 | MR | Zbl
[4] Andretta M., Birgin E. G., Martinez J. M., “Partial spectral projected gradient method with active-set strategy for linearly constrained optimization”, Numer. Algorithms, 53:1 (2010), 23–52 | DOI | MR | Zbl
[5] Barzilai J., Borwein J. M., “Two-point step size gradient methods”, IMA Journal of Numerical Analysis, 8 (1988), 141–148 | DOI | MR | Zbl
[6] Akaike H., “On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method”, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 1–16 | DOI | MR | Zbl
[7] Forsythe G. E., “On the asymptotic directions of the s-dimensional optimum gradient method”, Numerische Mathematik, 11 (1968), 57–76 | DOI | MR | Zbl
[8] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR