Finite element method with partial radiation conditions for diffraction problem on domains of complex structure
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 48-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve the diffraction problem on 2D complex structure objects by finite elements method with the partial radiation conditions is the main purpose this work. The testing of developed program has been carried out. It shows good agreement with exact solution of diffraction problem on infinite impermeable cylinder. There are a number of calculations to present our program opportunity.
Mots-clés : diffraction problem, partial radiation conditions.
Keywords: finite element method
@article{MM_2014_26_8_a3,
     author = {D. A. Konyaev and A. L. Delitsyn},
     title = {Finite element method with partial radiation conditions for diffraction problem on domains of complex structure},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--64},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a3/}
}
TY  - JOUR
AU  - D. A. Konyaev
AU  - A. L. Delitsyn
TI  - Finite element method with partial radiation conditions for diffraction problem on domains of complex structure
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 48
EP  - 64
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a3/
LA  - ru
ID  - MM_2014_26_8_a3
ER  - 
%0 Journal Article
%A D. A. Konyaev
%A A. L. Delitsyn
%T Finite element method with partial radiation conditions for diffraction problem on domains of complex structure
%J Matematičeskoe modelirovanie
%D 2014
%P 48-64
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a3/
%G ru
%F MM_2014_26_8_a3
D. A. Konyaev; A. L. Delitsyn. Finite element method with partial radiation conditions for diffraction problem on domains of complex structure. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 48-64. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a3/

[1] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izdatelstvo Moskovskogo Universiteta, 1987 | MR | Zbl

[2] Khenl K., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964

[3] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vysshaya shkola, M., 1991

[4] Eremin Yu. A., Sveshnikov A. G., Metod diskretnykh istochnikov v zadachakh elektromagnitnoi difraktsii, Izdatelstvo Moskovskogo Universiteta, 1992

[5] Richmond J. H., “Scattering by a dielectric cylinder of arbitrary cross section shape”, IEEE Transaction on Antennas and Propagation, AP, 13:3 (1965), 334–341 | DOI | MR

[6] Ilgamov M. A., Gilmanov A. N., Neotrazhayuschie usloviya na granitsakh raschetnoi oblasti, Fizmatlit, M., 2003 | Zbl

[7] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[8] Konyaev D. A., “Metod konechnykh elementov dlya resheniya skalyarnoi zadachi difraktsii na dvumernykh rasseivatelyakh slozhnoi struktury”, VMU, Ser. 3, Fizika. Astronomiya, 2012, no. 4, 30–36 | MR

[9] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[10] Frey P. J., George P. L., Mesh Generation Application to Finite Elements, HERMES Science Europe Ltd, 2000 | MR | Zbl

[11] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[12] Galanin M. P., Scheglov I. A., “Razrabotka i realizatsiya algoritmov trekhmernoi triangulyatsii slozhnykh prostranstvennykh oblastei: pryamye metody”, Preprinty IPM im. M. V. Keldysha RAN, 2006, 010, 32 pp.

[13] Galanin M. P., Scheglov I. A., “Razrabotka i realizatsiya algoritmov trekhmernoi triangulyatsii slozhnykh prostranstvennykh oblastei: iteratsionnye metody”, Preprinty IPM im. M. V. Keldysha RAN, 2006, 009, 32 pp.

[14] Pissanetski S., Tekhnologiya razrezhennykh matrits, Mir, M., 1988 | MR

[15] Balandin M. Yu., Shurina E. P., Metody resheniya SLAU bolshoi razmernosti, izd-vo NGTU, Novosibirsk, 2000