Approximation of the weak solution for the stationary isoelectrofocusing problem
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 31-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model describing a stationary natural pH-gradient arising in water solution of ampholytes under the influence of an electric field is constructed and investigated. The model is a part of the general isoelectric focusing model. Isoelectric focusing is the method of separation of multicomponent mixes (proteins, amino acids) on individual components by an electric field in the medium with the non-uniform pH. To obtain the solution of the problem we used the method based on approximation of the weak solution by piecewise-continuous functions. The different approximations of solution are presented.
Keywords: weak solution, approximation, isoelectric focusing.
@article{MM_2014_26_8_a2,
     author = {M. Yu. Zhukov and L. V. Sakharova},
     title = {Approximation of the weak solution for the stationary isoelectrofocusing problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--47},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a2/}
}
TY  - JOUR
AU  - M. Yu. Zhukov
AU  - L. V. Sakharova
TI  - Approximation of the weak solution for the stationary isoelectrofocusing problem
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 31
EP  - 47
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a2/
LA  - ru
ID  - MM_2014_26_8_a2
ER  - 
%0 Journal Article
%A M. Yu. Zhukov
%A L. V. Sakharova
%T Approximation of the weak solution for the stationary isoelectrofocusing problem
%J Matematičeskoe modelirovanie
%D 2014
%P 31-47
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a2/
%G ru
%F MM_2014_26_8_a2
M. Yu. Zhukov; L. V. Sakharova. Approximation of the weak solution for the stationary isoelectrofocusing problem. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 31-47. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a2/

[1] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza, Naukova dumka, Kiev, 1983, 202 pp.

[2] Mosher R. A., Saville D. A., Thorman W., The Dynamics of Electrophoresis, VCH Publishers, NY, 1992, 236 pp.

[3] Righetti P. G., Isoelectric focusing: Theory, Methodology and Application, Elsevier Biomedical Press, Amsterdam–New York–Oxford, 1983, 386 pp.

[4] Righetti P. G., Immobilized pH gradient. Laboratory techniques in biochemistry and molecular biology, Elsevier Biomedical Press, Amsterdam–New York–Oxford, 1990, 397 pp.

[5] Stoyanov A., Zhukov M. Yu., Righetti P. G., “The Proteome Revisited: Theory and practice of all relevant electrophoretic steps”, J. Chromatography, 63 (2001), 1–462

[6] Vesterberg O., Svensson H., “Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients”, Acta Chem. Scand., 20 (1966), 820–834 | DOI

[7] Vesterberg O., “The carrier ampholytes”, Isoelectric focusing, Acad. Pres., NY–London, 1976, 53–76 | DOI

[8] Haglund H., “Isoelectric focusing in pH gradients — a technique for fractionation and characterization of ampholytes”, Meth. Biochem. Anal., 19 (1971), 1–104 | DOI

[9] Svensson H., “Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. I: The differential equation of solute concentrations at a steady state and its solution for simple cases”, Acta Chem. Scand., 15:2 (1961), 325–341 | DOI

[10] Thormann W., Huang T., Pawliszyn J., Mosher R. A., “High-resolution computer simulation of the dynamics of isoelectric focusing of proteins”, Electrophoresis, 25 (2004), 324–337 | DOI

[11] Thormann W., Mosher R. A., “High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: Focusing with concurrent electrophoretic mobilization is an isotachophoretic process. Research Article”, Electrophoresis, 27 (2006), 968–983 | DOI

[12] Shim J., Dutta P., Ivory C. F., “Modeling and simulation of IEF in 2-D microgeometries”, Electrophoresis, 28 (2007), 572–586 | DOI

[13] Natale M., Caiazzo A., Bucci E. M., Ficarra E., “A novel Gaussian fitting approach for 2D gel electrophoresis saturated protein spots”, Bionformatics 2012, International Conference of Bionformatics models, methods and algorithms, 2012, 335–338

[14] Bahga S. S., Bercovici M., Santiago J. G., “Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels”, Electrophoresis, 33 (2012), 3036–3051 | DOI

[15] Averkov A. N., Zhukov M. Yu., Sakharova L. V., “Raschet statsionarnogo pH-gradienta v rastvore aminokislot pri bolshikh plotnostyakh toka”, Sovremennye problemy mekhaniki sploshnoi sredy, Trudy IX Mezhdunarodnoi konferentsii, v. 1, Izd. OOO «TsVVR», Rostov n/D, 2005, 8–13

[16] Sakharova L. V., Vladimirov V. A., Zhukov M. Yu., Anomalous pH-gradient in Ampholyte Solution, 2009, arXiv: 0902.3758v1

[17] Sakharova L. V., “Issledovanie mekhanizma transformatsii gaussovskogo raspredeleniya kontsentratsii pri anomalnykh rezhimakh izoelektricheskogo fokusirovaniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Estestvennye nauki, 2012, 30–36

[18] Sakharova L. V., “Reshenie zhestkoi integro-differentsialnoi zadachi IEF metodom kasatelnykh”, Uchenye zapiski Orlovskogo Gosudarstvennogo Universiteta, 2012, no. 6 (50), 48–55

[19] Zhukov M. Yu., Massoperenos elektricheskim polem, Izd. RGU, Rostov n/D, 2005