Mathematical modeling of the schumpeterian dynamics of innovation
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses the possibility to use the results of the asymptotic behavior of solutions of the Cauchy problem of differential-difference analogues of the Korteweg-de Vries–Burgers to model the schumpeterian dynamics of the spread of new technologies. The conditions under which an advanced technological system has no effect on technological progress in backward order.
Keywords: schumpeterian dynamics, new technologies, the Korteweg de Vries–Burgers, asymptotic of the solution of the Cauchy problem.
@article{MM_2014_26_8_a0,
     author = {G. M. Henkin and A. A. Shananin},
     title = {Mathematical modeling of the schumpeterian dynamics of innovation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/}
}
TY  - JOUR
AU  - G. M. Henkin
AU  - A. A. Shananin
TI  - Mathematical modeling of the schumpeterian dynamics of innovation
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 19
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/
LA  - ru
ID  - MM_2014_26_8_a0
ER  - 
%0 Journal Article
%A G. M. Henkin
%A A. A. Shananin
%T Mathematical modeling of the schumpeterian dynamics of innovation
%J Matematičeskoe modelirovanie
%D 2014
%P 3-19
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/
%G ru
%F MM_2014_26_8_a0
G. M. Henkin; A. A. Shananin. Mathematical modeling of the schumpeterian dynamics of innovation. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/

[1] Von Josef Schumpeter, Theorie der wirtschaftlichen, 1912; Shumpeter I., Teoriya ekonomicheskogo razvitiya, Progress, M., 1982, 455 pp.

[2] Khaiek F. A., Pagubnaya samonadeyannost. Oshibki sotsializma, Novosti, M., 1992, 304 pp.

[3] Kondratev N. D., Oparin D. I., Bolshie tsikly kon'yunktury: Doklady i ikh obsuzhdenie v institute ekonomiki, Institut ekonomiki AN, M., 1928

[4] Zegveld V., Entsig K., SOI: tekhnologicheskii proryv ili ekonomicheskaya avantyura?, Progress, M., 1989

[5] Doklad Stiglitsa o reforme mezhdunarodnoi valyutno-finansovoi sistemy: uroki globalnogo krizisa, Doklad komissii finansovykh ekspertov OON, Mezhdunarodnye otnosheniya, M., 2012

[6] Pari Patel, “Keith Pavitt Patterns of technological activity: their measurement and interpretation”, Handbook of the economic of innovation and technological change, ed. Paul Stoneman, 1995, 14–51

[7] Petrov A. A., Pospelov I. G., Shananin A. A., Opyt matematicheskogo modelirovaniya ekonomiki, Energoatomizdat, M., 1996 | MR | Zbl

[8] Polterovich V. M., Khenkin G. M., “Evolyutsionnaya model vzaimodeistviya protsessov sozdaniya i zaimstvovaniya tekhnologii”, Ekonomika i matematicheskie metody, XXIV:6 (1988) | MR

[9] Griliches Zvi, “Hybrid corn: an exploration in the economics of technological change”, Econometrica, 25 (1957), 501–522 | DOI

[10] Iwai K., “Schumpeterian dynamics. Part I: An evolutionary model of innovation and imitation”, Journal of economic behavior and organization, 5 (1984), 159–190 | DOI

[11] Iwai K., “Schumpeterian dynamics. Part II: Technological progress, firm, growth and “economic selection””, Journal of economic behavior and organization, 5 (1984), 287–320 | DOI

[12] Polterovich V. M., Khenkin G. M., “Evolyutsionnaya model ekonomicheskogo rosta”, Ekonomika i matematicheskie metody, XXV:3 (1989) | MR | Zbl

[13] Tashlitskaya Ya. M., Shananin A. A., “Mnogoukladnost tekhnologicheskoi struktury i vliyanie tranzaktsionnykh izderzhek na rasprostranenie innovatsii”, Matematicheskoe modelirovanie, 12:12 (2000), 24–34 | Zbl

[14] Gelman L. M., Levin M. I., Polterovich V. M., Spivak V. A., “Modelirovanie raspredeleniya predpriyatii otrasli po urovnyam effektivnosti (na primere chernoi metallurgii)”, Ekonomika i matematicheskie metody, XXIX:3 (1993), 1071–1083

[15] Acemoglu D., Introduction to modern economic growth, Princeton university press, 2009, 990 pp. | Zbl

[16] Henkin G. M., Polterovich V. M., “Schumpeterian dynamics as a nonlinear wave theory”, J. Math. Econ., 1991, 551–590 | DOI | MR | Zbl

[17] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation: stability of two-wave behavior”, J. Nonlinear sci., 4 (1994), 497–517 | DOI | MR | Zbl

[18] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation and some models of economic development”, Discrete and continuous dynamical systems, 5:4 (1999), 697–728 | DOI | MR | Zbl

[19] Henkin G. M., Shananin A. A., “Asymptoic behavior of solutions of Cauchy problem for Burgers type equations”, Journal of mathematiques pures at appliqués, 2004, no. 12, 1457–1500 | DOI | MR | Zbl

[20] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Advances in mathematics, 16:2 (1975), 197–220 | DOI | MR | Zbl

[21] Tashlitskaya Ya. M., Shananin A. A., Modelirovanie protsessa rasprostraneniya novykh tekhnologii, Soobscheniya po prikladnoi matematike, VTs RAN, M., 2000, 50 pp.