Mathematical modeling of the schumpeterian dynamics of innovation
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses the possibility to use the results of the asymptotic behavior of solutions of the Cauchy problem of differential-difference analogues of the Korteweg-de Vries–Burgers to model the schumpeterian dynamics of the spread of new technologies. The conditions under which an advanced technological system has no effect on technological progress in backward order.
Keywords: schumpeterian dynamics, new technologies, the Korteweg de Vries–Burgers, asymptotic of the solution of the Cauchy problem.
@article{MM_2014_26_8_a0,
     author = {G. M. Henkin and A. A. Shananin},
     title = {Mathematical modeling of the schumpeterian dynamics of innovation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/}
}
TY  - JOUR
AU  - G. M. Henkin
AU  - A. A. Shananin
TI  - Mathematical modeling of the schumpeterian dynamics of innovation
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 19
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/
LA  - ru
ID  - MM_2014_26_8_a0
ER  - 
%0 Journal Article
%A G. M. Henkin
%A A. A. Shananin
%T Mathematical modeling of the schumpeterian dynamics of innovation
%J Matematičeskoe modelirovanie
%D 2014
%P 3-19
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/
%G ru
%F MM_2014_26_8_a0
G. M. Henkin; A. A. Shananin. Mathematical modeling of the schumpeterian dynamics of innovation. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a0/