Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_7_a7, author = {O. F. Voropaeva}, title = {Improved two-equation turbulence models of free stratified turbulence}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--113}, publisher = {mathdoc}, volume = {26}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a7/} }
O. F. Voropaeva. Improved two-equation turbulence models of free stratified turbulence. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 97-113. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a7/
[1] Vasilev O. F., Voropaeva O. F., Kurbatskii A. F., “Turbulentnoe peremeshivanie v ustoichivo stratifitsirovannykh techeniyakh okruzhayuschei sredy: sovremennoe sostoyanie problemy (obzor)”, Izvestiya RAN. Ser. FAiO, 47:3 (2011), 291–307 | MR
[2] Kantha L., “Modeling turbulent mixing in the global Ocean: second moment closure models”, Turbulence: Theory, Types and Simulation, ed. R. J. Marcuso, Nova Science Publishers, 2010, 1–68
[3] Rodi W., The prediction of free turbulent boundary layers by use of two-equation model of turbulence, Ph. D. Thesis, University of London, 1972, 310 pp.
[4] Rodi V., “Modeli turbulentnosti okruzhayuschei sredy”, Metody rascheta turbulentnykh techenii, Mir, M., 1984, 227–322
[5] Mellor G. L., Yamada T., “A hierarchy of turbulence closure models for planetary boundary layer”, J. Atmos. Sci., 31 (1974), 1791–1806 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Mellor G. L., Yamada T., “Development of a Turbulence Closure Model for Geophysical Fluid Problems”, Reviews of Geophysics and Space Physics, 20 (1982), 851–875 | DOI
[7] Kantha L. H., Clayson C. A., “An improved mixed-layer model for geophysical applications”, J. Geophys. Res., 99 (1994), 25235–25266 | DOI
[8] Rodi W., “Examples of calculation methods for flow and mixing in stratified fluids”, J. Geophys. Res., 92:5 (1987), 5305–5328 | DOI
[9] Canuto V. M., Howard A., Cheng Y., Dubovikov M. S., “Ocean Turbulence. Part I: One-Point Closure Model-Momentum and Heat Vertical Diffusivities”, J. Phys. Oceanogr., 31 (2001), 1413–1425 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[10] Kurbatskii A. F., Kurbatskaya L. I., “Trekhparametricheskaya model turbulentnosti dlya atmosfernogo pogranichnogo sloya nad urbanizirovannoi poverkhnostyu”, Izvestiya RAN. Ser. FAiO, 42:4 (2006), 476–494
[11] H. Baumert, J. Simpson, Ju. Sunderman, Marine Turbulence: Theories, Observations, and Models, Cambridge University Press, 2005, 630 pp.
[12] Hassid S., “Collapse of turbulent wakes in stable stratified media”, J. Hydronautics, 14 (1980), 25–32 | DOI
[13] Voropaeva O. F., Chernykh G. G., “Chislennaya model dinamiki bezympulsnogo turbulentnogo sleda v piknokline”, PMTF, 38:3 (1997), 69–86 | Zbl
[14] Chashechkin Yu. D., Chernykh G. G., Voropayeva O. F., “The Propagation of a Passive Admixture from a Local Instantaneous Source in a Turbulent Mixing Zone”, IJCFD, 19:7 (2005), 517–529 | Zbl
[15] Chernykh G. G., Voropayeva O. F., “Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium”, Computers and Fluids, 28:3 (1999), 281–306 | DOI | Zbl
[16] Voropaeva O. F., “Chislennaya model anizotropnogo vyrozhdeniya turbulentnosti v dalnem bezympulsnom slede v stratifitsirovannoi srede”, Matematicheskoe modelirovanie, 20:10 (2008), 23–38 | MR
[17] Burchard H., Bolding K., “Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer”, J. Phys. Oceanogr., 31 (2001), 1943–1968 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[18] Deleersnijder E., Luyten P., “On the practical advantages of the quasi-equilibrium version of the Mellor and Yamada level 2.5 turbulence closure applied to marine modelling”, App. Math. Modelling, 18 (1994), 281–287 | DOI | Zbl
[19] Craft J. J., Ince N. Z., Launder B. E., “Recent Developments in second-moment closure for buoyancy-affected flows”, Preprints of the Fourth Int. Symp. on Stratified Flows, general sess. (Grenoble, June 29–July 2, 1994), v. 2, Inst. of Mech., Grenoble, 1994, 16 pp.
[20] Voropaeva O. F., Chernykh G. G., “Vnutrennie volny, generiruemye bezympulsnym turbulentnym sledom v lineino stratifitsirovannoi srede”, Matematicheskoe modelirovanie, 10:6 (1998), 75–89
[21] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Sib. otd., Novosibirsk, 1967, 195 pp. | MR
[22] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp. | MR | Zbl
[23] Voropaeva O. F., “Chislennoe modelirovanie bezympulsnykh turbulentnykh sledov za sferoi”, Vychislitelnye tekhnologii, 6:4(2) (2001), 188–194
[24] Voropaeva O. F., “Chislennoe issledovanie bezympulsnykh turbulentnykh sledov za sferoi na osnove poluempiricheskikh modelei turbulentnosti vtorogo poryadka”, Vychislitelnye tekhnologii, 7:2 (2002), 11–23 | MR | Zbl
[25] Voropayeva O. F., “Far momentumless turbulent wake in passively stratified medium”, RJNAMM, 19:1 (2004), 83–102 | MR | Zbl
[26] Voropaeva O. F., “Ierarkhiya poluempiricheskikh modelei turbulentnosti vtorogo i tretego poryadka v raschetakh bezympulsnykh sledov za telami vrascheniya”, Matematicheskoe modelirovanie, 19:3 (2007), 29–51 | MR | Zbl
[27] Aleksenko N. V., Kostomakha V. A., “Eksperimentalnoe issledovanie osesimmetrichnogo bezympulsnogo turbulentnogo struinogo techeniya”, PMTF, 1987, no. 1, 65–69
[28] Lin J. T., Pao Y. H., “Wakes in stratified fluids”, Annu. Rev. Fluid Mech., 11 (1979), 317–336 | DOI
[29] Monin A. S., Ozmidov R. V., Okeanskaya turbulentnost, Gidrometeoizdat, L., 1981
[30] Popov V. A., “Razvitie oblasti chastichno peremeshannoi zhidkosti v tonkosloistoi srede”, Izv. AN SSSR. FAO, 22:4 (1986), 389–394
[31] Kao T. W., Pao H. P., “Wake collapse in the thermocline and internal solitary waves”, J. Fluid. Mech., 97:1 (1980), 115–127 | DOI
[32] Voropaeva O. F., Chernykh G. G., “The interaction of turbulent mixing region with local density perturbation in a pycnocline”, Journal of Engineering Thermophysics, 20:4 (2011), 434–458 | DOI