Order reduction of control and estimation problems for flexible joint manipulator
Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 72-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The integral manifold method is used in the paper for controller design for manipulators with flexible joints in the case of a small friction. For a class of nonlinear systems a nonlinear controller, that achieves asymptotic tracking of given trajectory, is designed. It shows the existence of a lower order control problems, which are equivalent to an original singularly perturbed problems with initial conditions restricted to a slow integral manifold.
Keywords: flexible joint manipulator, optimal control, integral manifold.
Mots-clés : LQR
@article{MM_2014_26_7_a5,
     author = {M. Osintcev and V. Sobolev},
     title = {Order reduction of control and estimation problems for flexible joint manipulator},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {72--86},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a5/}
}
TY  - JOUR
AU  - M. Osintcev
AU  - V. Sobolev
TI  - Order reduction of control and estimation problems for flexible joint manipulator
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 72
EP  - 86
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_7_a5/
LA  - ru
ID  - MM_2014_26_7_a5
ER  - 
%0 Journal Article
%A M. Osintcev
%A V. Sobolev
%T Order reduction of control and estimation problems for flexible joint manipulator
%J Matematičeskoe modelirovanie
%D 2014
%P 72-86
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_7_a5/
%G ru
%F MM_2014_26_7_a5
M. Osintcev; V. Sobolev. Order reduction of control and estimation problems for flexible joint manipulator. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 72-86. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a5/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR | Zbl

[2] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990, 208 pp. | MR | Zbl

[3] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhniki VINITI. Mat. Analiz, 20, 1982, 3–77 | MR | Zbl

[4] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl

[5] Naidu D. S., “Singular perturbations and time scales in control theory and applications: an overview”, Dynam. Continuous, Discrete and Impulsive Syst. Ser. B: Appl. Algorithm, 9 (2002), 233–278 | MR | Zbl

[6] Sobolev V. A., “Singulyarnye vozmuscheniya v lineino-kvadratichnoi zadache optimalnogo upravleniya”, Avtomatika i telemekhanika, 1991, no. 2, 53–64 | MR | Zbl

[7] Sobolev V. A., “Geometriya singulyarnykh vozmuschenii v vyrozhdennykh sluchayakh”, Matem. modelirovanie, 13:12 (2001), 75–94 | MR | Zbl

[8] Gu Z. M., Nefedov N. N., O'Malley R. E. (Jr.), “On singular singularly perturbed initial value problems”, SIAM J. Appl. Math., 49:1 (1989), 1–25 | DOI | MR | Zbl

[9] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka. Gl. red. fiz.-mat. lit., M., 1988, 256 pp. | MR | Zbl

[10] Spong M. W., Vidyasagar M., Robot Dynamics and Control, Wiley, New York, 1989, 331 pp.

[11] Spong M. W., Khorasani K., Kokotovic P. V., “An integral manifold approach to the feedback control of flexible joint robots”, IEEE Journal of Robotics and Automation, 3:4 (1987), 291–300 | DOI | MR

[12] Ghorbel F., Spong M. W., “Integral Manifold of Singularly Perturbed Systems with Application to Rigid-link Flexible-joint Multibody System”, International Journal of Non-linear Mechanics, 35 (2000), 133–155 | DOI | MR | Zbl

[13] Vakil M., Fotouhi R., Nikiforuk P. N., “End-effector trajectory tracking of a flexible link manipulator using integral manifold concept”, International Journal of Systems Science, 42:12 (2011), 2057–2069 | DOI | MR | Zbl

[14] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009, 256 pp. | Zbl

[15] O'Malley R. E., Mortell M. P., Pokrovskii A., Sobolev V. A., Singular perturbations and hysteresis, SIAM, Philadelphia, 2005, 360 pp. | MR | Zbl

[16] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp. | MR