The monitoring state of a moving train using high performance systems and modern computational methods
Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to study the propagation of elastic waves in the rail. The comparative analysis of the calculation obtained by the grid-characteristic method and by the discontinuous Galerkin method was done. The comparison of the elastic waves' propagation in the presence and absence of a cavity in the ground of the railway embankment was made as well. The comparison of the signals diagnosed in these cases in the rail was done. Also the wave pattern and diagnosed signals for the four types of defects in the rails are shown: vertical and horizontal separation of the rail head, transverse cracks in the rail head and the cracks in the rail neck. The grid-characteristic method on curvilinear structural meshes and the discontinuous Galerkin method on unstructured triangular meshes provide to meet the challenges of the monitoring of the state of rolling stocks and railways effectively, including taking into account the large amount of violations the integrity, to take into account the dynamic interaction in the system "the rolling stock–the railway", to get a complete wave pattern.
Keywords: grid-characteristic method, discontinuous Galerkin method, defectoscopy, monitoring of the rolling-stocks, numerical simulation.
@article{MM_2014_26_7_a1,
     author = {I. B. Petrov and A. V. Favorskaya and N. I. Khokhlov and V. A. Miryaha and A. V. Sannikov and V. I. Golubev},
     title = {The monitoring state of a moving train using high performance systems and modern computational methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a1/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - A. V. Favorskaya
AU  - N. I. Khokhlov
AU  - V. A. Miryaha
AU  - A. V. Sannikov
AU  - V. I. Golubev
TI  - The monitoring state of a moving train using high performance systems and modern computational methods
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 19
EP  - 32
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_7_a1/
LA  - ru
ID  - MM_2014_26_7_a1
ER  - 
%0 Journal Article
%A I. B. Petrov
%A A. V. Favorskaya
%A N. I. Khokhlov
%A V. A. Miryaha
%A A. V. Sannikov
%A V. I. Golubev
%T The monitoring state of a moving train using high performance systems and modern computational methods
%J Matematičeskoe modelirovanie
%D 2014
%P 19-32
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_7_a1/
%G ru
%F MM_2014_26_7_a1
I. B. Petrov; A. V. Favorskaya; N. I. Khokhlov; V. A. Miryaha; A. V. Sannikov; V. I. Golubev. The monitoring state of a moving train using high performance systems and modern computational methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a1/

[1] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[2] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, ZhVMiMF, 24:5 (1984), 722–739 | MR | Zbl

[3] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matematicheskoe modelirovanie, 21:5 (2009), 3–9 | Zbl

[4] Kvasov I. E., Pankratov S. A., Petrov I. B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matematicheskoe modelirovanie, 22:9 (2010), 3–21

[5] Petrov I. B., Favorskaya A. V., Kvasov I. E., Sannikov A. V., “Setochno-kharakteristicheskii metod s interpolyatsiei vysokikh poryadkov na tetraedralnykh ierarkhicheskikh setkakh s kratnym shagom po vremeni”, Matematicheskoe modelirovanie, 25:2 (2013), 42–52

[6] Muratov M. V., Petrov I. B., “Raschet volnovykh otklikov ot sistem subvertikalnykh makrotreschin s ispolzovaniem setochno-kharakteristicheskogo metoda”, Matematicheskoe modelirovanie, 25:3 (2013), 89–104 | MR

[7] Kaser M., Dumbster M., “An arbitrary high discontinuous Galerkin Method for elastic waves on unstructured meshes in the two-dimensional case”, Geophysics Journal International, 166 (2000), 855–877 | DOI

[8] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Issledovanie vliyaniya limitera na poryadok tochnosti resheniya razryvnym metodom Galerkina”, Preprint IPM im. M. V. Keldysha RAN, 2012, 034

[9] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Issledovanie vliyaniya limitera na poryadok tochnosti resheniya razryvnym metodom Galerkina”, Matematicheskoe modelirovanie, 24:12 (2012), 124–128 | MR

[10] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Ispolzovanie razryvnogo metoda Galerkina pri reshenii zadach gidrodinamiki”, Matematicheskoe modelirovanie, 26:1 (2014), 17–32

[11] Harten Ami, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 135:2 (1997), 260–278 | DOI | MR | Zbl

[12] Petrov I. B., Khokhlov N. I., “Sravnenie TVD limiterov dlya chislennogo resheniya uravnenii dinamiki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniya, Sbornik nauchnykh trudov, 2011, 104–111

[13] Roe P. L., “Characteristic-Based Schemes for the Euler Equations”, Annual Review of Fluid Mechanics, 1986, no. 18, 337–365 | DOI | MR | Zbl

[14] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, ZhVMiMF, 46:9 (2006), 1560–1588 | MR

[15] MPI Forum. Message Passing Interface (MPI) Forum Home Page, 2009 http://www.mpi-forum.org/

[16] Gritsyk V. I., Defekty relsov zheleznodorozhnogo puti, Izd. Marshrut, M., 2005, 80 pp.