Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_7_a0, author = {N. N. Kalitkin and I. P. Poshivaylo}, title = {Arc length method of solving {Cauchy} problem with guaranteed accuracy for stiff systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {26}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/} }
TY - JOUR AU - N. N. Kalitkin AU - I. P. Poshivaylo TI - Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems JO - Matematičeskoe modelirovanie PY - 2014 SP - 3 EP - 18 VL - 26 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/ LA - ru ID - MM_2014_26_7_a0 ER -
N. N. Kalitkin; I. P. Poshivaylo. Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[2] Riks E., “The application of Newton's method to the problem of elastic stability”, Journal of Applied Mechanics, 39 (1972), 1060–1065 | DOI | Zbl
[3] Kuznetsov E. B., Shalashilin V. I., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999, 224 pp. | MR
[4] Jike Wu, Hui W. H., Hongli Ding, “Arc-length method for differential equations”, Applied Mathematics and Mechanics, 20:8 (1999), 936–942 | DOI | MR | Zbl
[5] Kalitkin H. H., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.
[6] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR
[7] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1964), 329–330 | DOI | MR
[8] Shirkov P. D., “Optimalno zatukhayuschie skhemy s kompleksnymi koeffitsientami dlya zhestkikh sistem ODU”, Matem. modelirovanie, 4:8 (1992), 47–57 | MR | Zbl
[9] Kalitkin N. N., Poshivailo I. P., “Obratnye Ls-ustoichivye skhemy Runge–Kutty”, Doklady Akademii Nauk, 442:2 (2012), 1–5 | MR
[10] Kalitkin N. N., Kuzmina L. V., Integrirovanie zhestkikh sistem differentsialnykh uravnenii, preprint No 80, IPM im. Keldysha, 1981, 23 pp. | MR
[11] Mazzia F., Magherini C., Test Set for Initial Value Problem Solvers, release 2.4, Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, 2008
[12] Verwer J. G., “Gauss–Seidel iteration for sti ODEs from chemical kinetics”, SIAM J. Sci.Comput., 15:5 (1994), 1243–1259 | DOI | MR