Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems
Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Arc length method is an efficient way of solving Cauchy problem for systems of ordinary differential equations which have areas with large values of right side of equation (stiff and ill-conditioned problems). It is shown how to get asymptotically exact a posteriori error estimation using Richardson method for such calculations. Provided examples demostrate that the bigger problem stiffness or ill-conditioning is, the bigger accuracy benefit the arc length method allows to achieve. As for hyperstiff problems (which components have significantly different orders of values), it is necessary to compute with higher digits capacity and/or analytical expression for Jacobian matrix in order to get a reliable solution.
Keywords: stiff systems, arc length
Mots-clés : ODE.
@article{MM_2014_26_7_a0,
     author = {N. N. Kalitkin and I. P. Poshivaylo},
     title = {Arc length method of solving {Cauchy} problem with guaranteed accuracy for stiff systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - I. P. Poshivaylo
TI  - Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 18
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/
LA  - ru
ID  - MM_2014_26_7_a0
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A I. P. Poshivaylo
%T Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems
%J Matematičeskoe modelirovanie
%D 2014
%P 3-18
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/
%G ru
%F MM_2014_26_7_a0
N. N. Kalitkin; I. P. Poshivaylo. Arc length method of solving Cauchy problem with guaranteed accuracy for stiff systems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a0/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[2] Riks E., “The application of Newton's method to the problem of elastic stability”, Journal of Applied Mechanics, 39 (1972), 1060–1065 | DOI | Zbl

[3] Kuznetsov E. B., Shalashilin V. I., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999, 224 pp. | MR

[4] Jike Wu, Hui W. H., Hongli Ding, “Arc-length method for differential equations”, Applied Mathematics and Mechanics, 20:8 (1999), 936–942 | DOI | MR | Zbl

[5] Kalitkin H. H., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[6] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[7] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1964), 329–330 | DOI | MR

[8] Shirkov P. D., “Optimalno zatukhayuschie skhemy s kompleksnymi koeffitsientami dlya zhestkikh sistem ODU”, Matem. modelirovanie, 4:8 (1992), 47–57 | MR | Zbl

[9] Kalitkin N. N., Poshivailo I. P., “Obratnye Ls-ustoichivye skhemy Runge–Kutty”, Doklady Akademii Nauk, 442:2 (2012), 1–5 | MR

[10] Kalitkin N. N., Kuzmina L. V., Integrirovanie zhestkikh sistem differentsialnykh uravnenii, preprint No 80, IPM im. Keldysha, 1981, 23 pp. | MR

[11] Mazzia F., Magherini C., Test Set for Initial Value Problem Solvers, release 2.4, Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, 2008

[12] Verwer J. G., “Gauss–Seidel iteration for sti ODEs from chemical kinetics”, SIAM J. Sci.Comput., 15:5 (1994), 1243–1259 | DOI | MR